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Preface

If you are in the process of deploying large-scale data systems into
production or if you are using large-scale data in production now,
this book is for you. In it we address the difference in big data hype
versus serious large-scale projects that bring real value in a wide
variety of enterprises. Whether this is your first large-scale data
project or you are a seasoned user, you will find helpful content that
should reinforce your chances for success.

Here, we speak to business team leaders; CIOs, CDOs, and CTOs;
business analysts; machine learning and artificial intelligence (AI)
experts; and technical developers to explain in practical terms how
to take big data analytics and machine learning/AI into production
successfully. We address why this is challenging and offer ways to
tackle those challenges. We provide suggestions for best practice,
but the book is intended as neither a technical reference nor a com‐
prehensive guide to how to use big data technologies. You can
understand it regardless of whether you have a deep technical back‐
ground. That said, we think that you’ll also benefit if you’re techni‐
cally adept, not so much from a review of tools as from fundamental
ideas about how to make your work easier and more effective.

The book is based on our experience and observations of real-world
use cases so that you can gain from what has made others successful.

How to Use This Book
Use the first two chapters to gain an understanding of the goals and
challenges and some of the potential pitfalls of deploying to produc‐
tion (Chapter 1) and for guidance on how to best approach the
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design, planning, and execution of large data systems for production
(Chapter 2). You will learn how to reduce risk while maintaining
innovative approaches and flexibility. We offer a pragmatic
approach, taking into account that winning systems must be cost
effective and make sense as sustainable, practical, and profitable
business solutions.

From there, the book digs into specific examples, based on real-
world experience with customers who are successfully using big data
in production. Chapter 3 focuses on the special case of machine
learning and AI in production, given that this topic is gaining in
widespread popularity. Chapter 4 describes an example technology
of a data platform with the necessary technical capabilities to sup‐
port emerging trends for large-scale data in production.

With this foundational knowledge in hand, you’ll be set in the last
part of the book to explore in Chapter 5 a range of design patterns
that are working well for the customers in production we see across
various sectors. You can customize these patterns to fit your own
needs as you build and adapt production systems. Chapter 6 offers a
variety of specific tips for best practice and how to avoid “gotchas”
as you move to production.

We hope you find this content makes production easier and more
effective in your own business setting.

—Ted Dunning and Ellen Friedman
September 2018
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CHAPTER 1

Is It Production-Ready?

The future is already here—it’s just not evenly distributed.
—William Gibson

Big data has grown up. Many people are already harvesting huge
value from large-scale data via data-intensive applications in pro‐
duction. If you’re not yet doing that or not doing it successfully,
you’re missing out. This book aims to help you design and build
production-ready systems that deliver value from large-scale data.
We offer practical advice on how to do this based on what we’ve
observed across a wide range of industries.

The first thing to keep in mind is that finding value isn’t just about
collecting and storing a lot of data, although that is an essential part
of it. Value comes from acting on that data, through data-intensive
applications that connect to real business goals. And this means that
you need to identify practical actions that can be taken in response
to the insights revealed by these data-driven applications. A report
by itself is not an action; instead, you need a way to connect the
results to value-based business goals, whether internal or customer
facing. For this to work in production, the entire pipeline—from
data ingestion, through processing and analytic applications to
action—must be doable in a predictable, dependable, and cost-
effective way.
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Big data isn’t just big. It’s much more than just an
increase in data volume. When used to full advantage,
big data offers qualitative changes as well as quantita‐
tive. In aggregate, data often has more value than just
the sum of the parts. You often can ask—and, if you’re
lucky, answer—questions that could not have been
addressed previously.

Value in big data can be based on building more efficient ways of
doing core business processes, or it might be found through new
lines of business. Either way, it can involve working not only at new
levels of scale in terms of data volume but also at new speeds. The
world is changing: data-intensive applications and the business goals
they address need to match the new microcycles that modern busi‐
nesses often require. It’s no longer just a matter of generating reports
at yearly, quarterly, monthly, weekly, or even daily cycles. Modern
businesses move at a new rhythm, often needing to respond to
events in seconds or even subseconds. When decisions are needed at
very low latency, especially at large scale, they usually require auto‐
mation. This is a common goal of modern systems: to build applica‐
tions that automate essential processes.

Another change in modern enterprises has to do with the way appli‐
cations are designed, developed, and deployed: for your organiza‐
tion to take full advantage of innovative new approaches, you need
to work on a foundation and in a style that can allow applications to
be developed over a number of iterations.

These are just a few examples of the new issues that modern busi‐
nesses working with large-scale systems face. We’re going to delve
into the goals and challenges of big data in production and how you
can get the most out of the applications and systems you build, but
first, we want to make one thing clear: the possibilities are enor‐
mous and well worth pursuing, as depicted in Figure 1-1. Don’t fall
for doom-and-gloom blogs that claim big data has failed because
some early technologies for big data have not performed well in pro‐
duction. If you do, you’ll miss out on some great opportunities. The
business of getting value from large-scale data is alive and well and
growing rapidly. You just have to know how to do it right.

2 | Chapter 1: Is It Production-Ready?



Figure 1-1. Successful production projects harvest the potential value
in large-scale data in businesses as diverse as financial services, agri-
tech, and transportation. Data-intensive applications are specific for
each industry, but there are many similarities in basic goals and chal‐
lenges for production.

Production brings its own challenges as compared to work in devel‐
opment or experimentation. These challenges are, for some, seem‐
ingly a barrier, but they don’t need to be. The first step is to clearly
recognize the challenges and pitfalls that you might encounter as
you move into production so that you can have a clear and well-
considered plan in advance on how to avoid or address them. In this
chapter, we talk not only about the goals of production, but also the
challenges and offer some hints about how you can recognize a sys‐
tem that is in fact ready for production.
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There is no magic formula for success in production, however. Suc‐
cess requires making good choices about how to design a
production-capable architecture, how to handle data and build
effective applications, and what the right technologies and organiza‐
tional culture are to fit your particular business. There are several
themes that stand out among those organizations that are doing this
successfully: what “production” really is, why multitenancy matters,
the importance and power of simplicity and the value of flexibility.
It’s not a detailed or exhaustive list, but we think these ideas make a
big difference as you go to production, so we touch on them in this
chapter and then dig deeper throughout the rest of the book as to
how you can best address them.

Let’s begin by taking a look at what production is. We have a bit of a
different view than what is traditionally meant by production. This
new view can help you be better prepared as you tackle the challenge
of production in large-scale, modern systems.

What Does Production Really Mean?
What do we mean by “in production”? The first thing that you
might have in mind is to assume that production systems are appli‐
cations that are customer facing. Although that is often true, it’s not
the only important characteristic. For one thing, there are internal
systems that are mainstream processes and are critical to business
success. The fact that business deliverables depend on such systems
makes them be in production, as well.

There’s a better way to think about what production really means. If
a process truly matters to your business, consider it as being in pro‐
duction and plan for it accordingly. We take that a step further:
being in production means making promises you must keep. These
promises are about connecting to real business value and meeting
goals in a reasonable time frame. They also have to do with collect‐
ing and providing access to the right data, being able to survive a
disaster, and more.

“In production” means making and keeping value-
oriented promises. These promises are made and kept
because they are about the stuff that matters to some‐
body.

4 | Chapter 1: Is It Production-Ready?



The key is to correctly identify what really matters, to document
(formalize) the promises you are making to address these issues, and
to have a way to monitor whether the promises are met. This some‐
what different view of production—the making and keeping of
promises for processes essential to your business—helps to ensure
that you take into account all aspects of what matters for production
to be successful across a complete pipeline rather than focusing on
just one step. This view also helps you to future-proof your systems
so that you can take advantage of new opportunities in a practical,
timely, and cost-effective way. We have more to say about that later,
but first, think about the idea that “in production” is about much
more than just the deployment of applications.

Data and Production
The idea of what is meant by in production also should extend to
data. With data-driven business, keep in mind that data is different
than code: Data is, importantly, in production sooner. In fact, you
might say that data has a longer memory than code. Developers
work through multiple iterations of code as an application evolves,
but data can have a role in production from the time it is ingested
and for decades after, and so it must be treated with the same care as
any production system.

There are several scenarios that can cause data to need to be consid‐
ered in production earlier than traditionally thought, and, of course,
that will depend on the particular situation. For instance, it’s an
unfortunate fact that messing up your data can cause you problems
much longer than messing up your code ever could. The problem,
of course, comes from the fact that you can fix code and deploy a
new version. Problem sorted. But if you mess up archival data, you
often can’t fix the problem at all. If you build a broken model, ver‐
sion control will give you the code you used, but what about the
data? Or, what about when you use an archive of nonproduction
data to build that model? Is that nonproduction data suddenly pro‐
moted retrospectively? In fact, data often winds up effectively in
production long before your code is ready, and it can wind up in
production without you even knowing at the time.

Another example is the need for compliance. Increasingly, busi‐
nesses are being held responsible to be able to document what was
known and when it was known for key processes and decisions,
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whether manual or automated. With new regulations, the situations
that require this sort of promise regarding data are expanding.

Newly ingested, or so-called “raw,” data also surprisingly might need
to be treated as production-grade even if data at all known subse‐
quent steps in processing and Extract, Transform, and Load (ETL)
for a particular application do not need to be. Here’s why. Newly
developed applications might come to need particular features of the
raw data that were discarded by the original application. To be pre‐
pared for that possibility, you would need to preserve raw data relia‐
bly as a valuable asset for future production systems even though
much of the data currently seems useless.

We don’t mean to imply that all data at all stages of a workflow be
treated as production grade. But one way to recognize whether
you’re building production-ready systems is to have a proactive
approach to planning data integrity across multiple applications and
lines of business. This kind of commonality in planning is a strength
in preparing for production. The issue of how to deal with when to
consider data as “in production” and how to treat it is difficult but
important. Another useful approach is to securely archive raw data
or partially raw data and treat that storage process as a production
process even if downstream use is not (yet) for production. Then,
document the boundary. We provide some suggestions in Chapter 6
that should help.

Do You Have the Right Data and Right Question?
The goal of producing real value through analytics often comes
down to asking the right question. But which questions you can
actually ask may be severely limited by how much data you keep and
how you can analyze it. Inherently, you have more degrees of free‐
dom in terms of which questions and what analyses are possible if
you retain the original data in a form closer to how events in the real
world happened.

Let’s take a simplified example as an illustration of this. Assume for
the moment that we have sent out three emails and want to deter‐
mine which is the most effective at getting the response that we
want. This example isn’t really limited to emails, of course, but could
be all kinds of problems involving customer response or even physi‐
cal effects like how a manufacturing process responds to various
changes.
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Which email is the best performer? Look at the dashboard showing
the number of responses per hour in Figure 1-2. You can see that it
makes option C appear to be the best by far. Moreover, if all we have
is the number of responses in the most recent hour, this is the only
question we can ask and the only answer we can get. But it is really
misleading. It is only telling us which email performs best at tnow and
that’s not what we want to know.

Figure 1-2. A dashboard shows current click rates. In this graph, option
C seems to be doing better than either A or B. Such a dashboard can be
dangerously misleading because it shows no history.

There is a lot more to the story. Plotting the response rate against
time gives us a very different view, as shown in the top graph in
Figure 1-3. Now we see that each email was sent at different times,
which means that the instantaneous response rate at tnow is mostly
just a measure of which email was most recently sent. Accumulating
total responses instead of instantaneous response rate doesn’t fix
things, because that just gives a big advantage to the email that was
sent first instead of most recently.

In contrast to comparing instantaneous rates as in the upper panel
of Figure 1-3, by aligning these response curves according to their
launch times we get a much better picture of what is happening, as
shown in the lower panel. Doing this requires that we retain a his‐
tory of click rates as well as record the events corresponding to each
email’s launch.
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Figure 1-3. Raw click data is graphed in the upper graph. Three email
options (A, B and C) were launched at different times, which makes
comparing their short-term click rate at tnow very misleading. In con‐
trast, the lower graph shows responses aligned at their launch times.
Here the response is compared at a fixed time after launch. With this
data, it’s clear that option B (green) is actually the best performer.

But what if we want to do some kind of analysis that depends on
which time zone the recipient was in? Our aggregates are unlikely to
make this distinction. At some point, the only viable approach is to
record all the information we have about each response to every
email as a separate business event. Recording just the count of
events that fit into particular preknown categories (like A, B, or C)
takes up a lot less space but vastly inhibits what we can understand
about what is actually happening.

What technology we use to record these events is not nearly as
important as the simple fact that we do record them (we have sug‐
gestions on how to do this in Chapter 5). Getting this wrong by
summarizing event data too soon and too much has led some people
to conclude that big data technologies are of no use to them. Often,
however, this conclusion is based on using these new technologies to
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do the same analysis on the same summarized data as they had
always done and getting results that are no different. But the alterna‐
tive approach of recording masses of detailed events inevitably
results in a lot more data. That is, often, big data.

Does Your System Fit Your Business?
Production promises built into business goals define the Service
Level Agreements (SLAs) for data-intensive applications. Among
the most common criteria to be met are speed, scale, reliability, and
sustainability.

The need for speed
There often is time-value to large-scale data. Examples occur across
many industries. Real-time traffic and navigation insights are more
valuable when the commuter is en route to their destination rather
than hearing about a traffic jam that occurred yesterday. Data for
market reports, predictive analytics, utilities or telecommunications
usage levels, or recommendations for an ecommerce site all have a
time-based value. You build low latency data-intensive applications
because your business needs to know what’s happening in the real
world fast enough to be able to respond.

That said, it’s not always true that faster is better. Just making an
application or model run faster might not have any real advantage if
the timing of that process is already faster than reasonable require‐
ments. Make the design fit the business goal; otherwise, you’re wast‐
ing effort and possibly resources. The thing that motivates the need
for speed (your SLA) is getting value from data, not bragging rights.

Does it fit? Fit your design and technology to the needs
particular to specific business goals, anticipating what
will be required for production and planning accord‐
ingly. This is an overarching lesson, not just about
speed. Each situation defines its own requirements. A
key to success is to recognize those requirements and
address them appropriately.
In other words, don’t pick a solution before you under‐
stand the problem.
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Scale Is More Than Just Data Volume
Much of the value of big data lies in its scale. But scale—in terms of
processing and storage of very large data volumes of many terabytes
or petabytes—can be challenging for production, especially if your
systems and processes have been tested at only modest scale. In
addition, do you look beyond your current data volume require‐
ments to be ready to scale up when needed? This change can some‐
times need to happen quickly depending on your business model
and timeline, and of course it should be doable in a cost-effective
way and without unwanted disruption. A key characteristic of
organizations that deploy into production successfully is being able
to handle large volume and velocity of data for known projects but
also being prepared for growth without having to completely rebuild
their system.

A different twist on the challenge of scale isn’t just about data vol‐
ume. It can also be about the number of files you need to handle,
especially if the files are small. This might sound like a simple chal‐
lenge but it can be a show-stopper. We know of a financial institu‐
tion that needed to track all incoming and outgoing texts, chats, and
emails for compliance reasons. This was a production-grade
promise that absolutely had to be kept. In planning for this critical
goal, these customers realized that they would need to store and be
able to retrieve billions of small files and large files and run a com‐
plex set of applications including legacy code. From their previous
experience with a Hadoop Distributed File System (HDFS)–based
Apache Hadoop system, the company knew that this would likely be
very difficult to do using Hadoop and would require complicated
workarounds and dozens of name nodes to meet stringent require‐
ments for long-term data safety. They also knew that the size would
make conventional storage systems implausibly expensive. They
avoided the problem in this particular situation by building and
deploying the project on technology designed to handle large num‐
bers of small as well as large files and to have legacy applications
directly access the files. (We discuss that technology, a modern big
data platform, in Chapter 4). The point is, this financial company
was successful in keeping its promises because potential problems
were recognized in advance and planned for accordingly. These cus‐
tomers made certain that their SLAs fit their critical business needs
and, clearly understanding the problem, found a solution to fit the
needs.
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Additional issues to consider in production planning are the range
of applications that you’ll want to run and how you can do this relia‐
bly and without resulting in cluster sprawl or a nightmare of admin‐
istration. We touch on these challenges in the sections on
multitenancy and simplicity in this chapter as well as with the solu‐
tions introduced in Chapter 2.

Reliability Is a Must
Reliability is important even during development stages of a project
in order to make efficient use of developer time and resources, but
obviously pressures change as work goes into production. This
change is especially true for reliability. One way to think of the dif‐
ference between a production-ready project and one that is not
ready is to compare the behavior of a professional musician to an
amateur. The amateur musician practices a song until they can play
it through without a mistake. In contrast, the professional musician
practices until they cannot play it wrong. It’s the same with data and
software. Development is the process of getting software to work.
Production is the process of setting up a system so that it (almost)
never fails.

Issues of reliability for Hadoop-based systems built on HDFS might
have left some people thinking that big data systems are not suitable
for serious production deployments, especially for mission-critical
processes, but this should not be generalized to all big data systems.
That’s a key point to keep in mind: big data does not equal Hadoop.
Reliability is not the only issue that separates these systems, but it is
an important one. Well-designed big data systems can be relied on
with extreme confidence. Here’s an example for which reliability and
extreme availability are absolutely required.

Aadhaar: reliability brings success to an essential big data system
An example of when it matters to get things right is an impressive
project in which data has been used to change society in India. The
project is the Aadhaar project run by the Unique Identification
Authority of India (UIDAI). The basic idea of the project is to pro‐
vide a unique, randomly chosen 12-digit government-issued identi‐
fication number to every resident of India and to provide a
biometric data base so that anybody with an Aadhaar number can
prove their identity. The biometric data includes an iris scan of both
eyes plus the fingerprint of all ten fingers, as suggested by the illus‐

What Does Production Really Mean? | 11



tration in Figure 1-4. This record-scale biometric system requires
reliability, low latency, and complete availability 24/7 from anywhere
in India.

Figure 1-4. UIDAI runs the Aadhaar project whose goal is to provide a
unique 12-digit identification number plus biometric data for authen‐
tication to every one of the roughly 1.2 billion people in India. (Figure
based on image by Christian Als/Panos Pictures.)

Previously in India, most of the population lacked a passport or any
other identification documents, and most documents that were
available were easily forged. Without adequately verifiable identifi‐
cation, it was difficult or impossible for many citizens to set up a
bank account or otherwise participate in a modern economy, and
there was also a huge amount of so-called “leakage” of government
aid that disappeared to apparent fraud. Aadhaar is helping to change
that.

The Aadhaar data base can be used to authenticate identities for
every citizen, even in rural villages where a wide range of mobile
devices from cell phones to microscanners are used to authenticate
identities when a transaction is requested. Aadhaar ID authentica‐
tion is also used to verify qualification for government aid programs
such as food deliveries for the poor or pension payments for the eld‐
erly. Implementation of this massive digital identification system has
spurred economic growth and saved a huge amount of money by
thwarting fraud.
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From a technical point of view, what are the requirements for such
an impressive big data project? For this project to be successful in
production, reliability and availability are a must. Aadhaar must
meet strict SLAs for availability of the authentication service every
day, at any time, across India. The authentication process, which
involves a profile look-up, supports thousands of concurrent trans‐
actions with end-to-end response times on the order of 100 milli‐
seconds. The authentication system was originally designed to run
on Apache Hadoop and Apache HBase, but the system was neither
fast enough nor reliable enough, even with multiple redundant data‐
centers. Late in 2014, the authentication service was moved to a
MapR platform to make use of MapR-DB, a NoSQL data base that
supports the HBase API but avoids compaction delays. Since then,
there has been no downtime, and India has reaped the benefits of
this successful big data project in production.

Predictability and Repeatability
Predictability and repeatability also are key factors for business and
for engineering. If you don’t have confidence in those qualities, it’s
not a business; it’s a lottery—it’s not engineering; it’s a lucky acci‐
dent.

These qualities are especially important in the relationship between
test environments and production settings. Whether it’s a matter of
scale, meeting latency requirements or running in a very specific
environment, it’s important for test conditions to accurately reflect
what will happen in production. You don’t want surprises. Just
observing that an application worked in a test setting is not in itself
sufficient to determine that it is production ready. You must exam‐
ine the gap between test conditions and what you expect for real-
world production settings and, as much as is feasible, have them
match, or at least you should understand the implication of their
differences. How do you get better predictability and repeatability?
In Chapter 2, we explain several approaches that help with this,
including running containerized applications and using Kubernetes
as an orchestration layer. This is also one of the ways in which data
should be considered in production from early stages because it’s
important to preserve enough data to replay operations. We discuss
that further in the design patterns presented in Chapter 5.
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Security On-Premises, in Cloud, and Multicloud
Like reliability, data and system security are a must. You should
address them from the start, not as an add-on afterthought when
you are ready to deploy to production. People who are highly expe‐
rienced with security know that it is a process of design, data han‐
dling, management, and good technology rather than a fancy tool
you plug in and forget. Security should extend from on-premises
deployments across multiple datacenters and to cloud and multi‐
cloud systems, as well.

Depending solely on perimeter security implemented in user-level
software is not a viable approach for production systems unless it is
part of a layered defense that extends all the way down to the data
itself.

Risk Versus Potential: Pressures Change in Production
Pressures change as you move from development into production,
partly because the goals are different and partly because the scale or
SLAs change. Also, the people who handle requirements might not
be the same in production as they were in development.

First, consider the difference in goals. In development, the goal is to
maximize potential. You will likely explore a range of possibilities for
a given business goal, experimenting to see what approach will pro‐
vide the best performance for the predetermined goal. It’s smart to
keep in mind the SLAs your application will need to meet in pro‐
duction, but in development your need to meet these promises right
away is more relaxed. In development, you can better afford some
risk because the impact of a failure is less serious.

The balance between potential and risk changes as you move into
production. In production, the goal is to minimize risk, or at least to
keep it to acceptable levels. The potentially broad goals that you had
in development become narrower: you know what needs to be done,
and it must be delivered in a predictable, reproducible, cost-
effective, and reliable way, without requiring an army for effective
administration. Possible sources of risk come from the pressure of
scale and from speed; ironically these are two of the same character‐
istics that are often the basis for value.

Let’s look for a moment at the consequences of unreliable systems.
As we stated earlier, outages in development systems can have con‐
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sequences for lost time and lost morale when systems are down, but
these pale in comparison to the consequences for unreliability in
production because of the more immediate impact on critical busi‐
ness function. Reliability also applies to data safety, and, as we men‐
tioned earlier, data can have in-production pressures much sooner
than code does. Because the focus in production shifts to minimiz‐
ing risk, it’s often good to consider the so-called “blast radius” or
impact of a failure. The blast radius is generally much more limited
for application failures than for an underlying platform failure, so
the requirements for stability are higher for the platform.

Furthermore, the potential blast radius is larger for multitenant sys‐
tems, but this can have a paradoxical effect on overall business risk.
It might seem that the simple solution here is to avoid multitenancy
to minimize blast radius, but that’s not the best answer. If you don’t
make use of multitenancy, you are missing out on some substantial
advantages of a modern big data system. The trick is to pick a very-
high-reliability data platform to set up an overall multitenant design
but to logically isolate systems at the application level, as we explain
later in this chapter.

Should You Separate Development from Production?
With a well-designed system and the right data and analytics plat‐
form capabilities, it is possible to run development and production
applications on the same cluster, but generally we feel it is better to
keep these at least logically separated. That separation can be physi‐
cal so that development and production run on separate clusters,
and data is stored separately, as well, but it does not need to be so.
Mainly, the impact of development and production applications
should be separated. To do that requires that the system you use lets
you exert this control with reasonable effort rather than inflicting a
large burden for administration. In Chapters 2 and 4, we describe
techniques that help with either physical separation or separation of
impact.

There are additional implications when production data is stored on
a separate cluster from development. As more and more processes
depend on real data, it is becoming increasingly difficult to do seri‐
ous development without access to production data. Again, there is
more than one way to deal with this issue, but it is important to rec‐
ognize in advance whether this is needed in your projects and to
thus plan accordingly.
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A different issue arises over data that comes from development
applications. Development-grade processes should not produce pro‐
duction data. To do otherwise would introduce an obligation to live
up to promises that you aren’t ready to keep. We have already stated
that any essential data pipeline should be treated as being in produc‐
tion. This means that you should consider all of the data sources for
that pipeline and all of its components as production status.
Development-stage processes can still read production data, but any
output produced as a result will not be production grade.

Your system should also make it possible for an entire data flow to
be versioned and permission controlled, easily and efficiently. Sur‐
prisingly, even in a system with strong separation of development
and production, you probably still need multitenancy. Here’s why.

Why Multitenancy Matters
Multitenancy refers to an assignment of resources such that multiple
applications, users, and user groups and multiple datasets all share
the same cluster. This approach requires the ability to strictly and
securely insulate separate tenants as appropriate while still being
able to allow shared access to data when desired. Multitenancy
should be one of the core goals of a well-designed large data system
because it helps support large-scale analytics and machine learning
systems both in development and in production. Multitenancy is
valuable in part because it makes these systems more cost effective.
Sharing resources among applications, for instance, results in
resource optimization, keeping CPUs busy and having fewer under-
used disks. Well-designed and executed multitenancy offers better
optimization for specialized hardware such as Graphics Processing
Units (GPUs), as well. You could provide one GPU machine to each
of 10 separate data scientists, but that gives each one only limited
compute power. In contrast, with multitenancy you can give each
data scientist shared access to a larger, more powerful, shared GPU
cluster for bursts of heavy computation. This approach uses the
same number or less of GPUs yet delivers much more effective
resources for data-intensive applications.

There are also long-term reasons that multitenancy is a desirable
goal. Properly done, multitenancy can substantially reduce adminis‐
trative costs by allowing a single platform to be managed independ‐
ent of how many applications are using it. In addition, multitenancy
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makes collaboration more effective while helping to keep overall
architectures simple. A well-designed multitenant system is also bet‐
ter positioned to support development and deployment of your sec‐
ond (and third, and so on) big data project by taking advantage of
sunk costs. That is, you can do all of this if your platform makes
multitenancy safe and practical. Some large platforms don’t have
robust controls over access or might not properly isolate resource-
hungry applications from one another or from delay-sensitive appli‐
cations. The ability to control data placement is also an important
requirement of a data platform suitable for multitenancy.

Multitenancy also serves as a key strategy because many high-value
applications are also the ones that pose the highest development
risk. Taking advantage of the sunk costs of a platform intended for
current production or development by using it for speculative
projects allows high-risk/high-reward projects to proceed to a go/
no-go decision without large upfront costs. That means experimen‐
tation with new ideas is easier because projects can fail fast and
cheap. Multitenancy also allows much less data duplication, thus
driving down amortized cost, which again allows more experimen‐
tation.

Putting lots of applications onto a much smaller single cluster
instead of a number of larger clusters can pose an obvious risk, as
well. That is, outage in a cluster that supports a large number of
applications can be very serious because all of those applications are
subject to failure if the platform fails. It will also be possible (no
matter the system) for some applications to choke off access to criti‐
cal resources unless you have suitable operational controls and
platform-level controls. This means that you should not simply put
lots of applications on a single cluster without considering the
increased reliability required of a shared platform. We explain how
to deal with this risk in Chapter 2.

If you are thinking it’s too risky or too complicated to use a truly
multitenant system, look more closely at your design and the capa‐
bilities of your underlying platform and other tools: multitenancy is
practical to achieve, and it’s definitely worth it, but it won’t happen
by accident. We talk more about how to achieve it in later chapters.
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Simplicity Is Golden
Multitenancy is just one aspect of an efficient and reliable produc‐
tion system. You need to be able maintain performance, data local‐
ity, manage computation and storage resources, and deploy into a
predictable and controlled environment when new applications are
launched—and you should be able to do all this without requiring
an army of administrators. Otherwise, systems could be too expen‐
sive and too complicated to be sustainable in the long run.

We have experience with a very large retail company that maintains
a mixed collection of hundreds of critical business processes run‐
ning on a small number of production clusters with very effective
multitenancy. In this case the entire set of clusters is managed by a
very small team of administrators. They are able to share resources
across multiple applications and can deploy experimental programs
even in these essential systems. This retailer found its big data plat‐
form was so reliable and easy to manage that it didn’t even need a
war room for this data platform during the Christmas lockdown
months. These systems are returning large amounts of traceable
incremental revenues with modest ongoing overhead costs. The sav‐
ings have gone into developing new applications and exploring new
opportunities.

The lesson here is that simplicity is a strength. Again, keep in mind
that big data does not equal Hadoop. HDFS is a write once/read-
only distributed file system that is difficult to access for legacy soft‐
ware or a variety of machine learning tools. These traits can make
HDFS be a barrier to streamlined design. Having to copy data out of
HDFS systems to do data processing or machine learning on it and
then copy it back is an unnecessary complication. That is just one
example of how your choices in design and technology make a dif‐
ference to how easily you can make a system be production ready.

Big data systems don’t need to be cumbersome. If you
find your design has a lot of workarounds, that’s a flag
to warn you that you might not have the best architec‐
ture and technology to support large-scale data-
intensive applications in production.

For a system to be sustainable in production it must be cost effec‐
tive, both in terms of infrastructure and administrative costs. A

18 | Chapter 1: Is It Production-Ready?



well-designed big data system does not take an army of administra‐
tors to maintain.

Flexibility: Are You Ready to Adapt?
The best success comes from systems that can expand to larger scale
or broaden to include new data and new applications—even make
use of new technologies—without having to be rebuilt from scratch.
A data and analytics platform should have the capabilities to support
a range of data types, storage structures and access APIs, legacy, and
new code, in order to give you the flexibility needed for modern
data-driven work. Even a system running very well in production
today will need to be able to change in a facile manner in future
because the world doesn’t stay the same—you need a system that
delivers reliability now but makes it possible for you to adapt to
changing conditions and new opportunities.

If you are working in a system design and with a platform that gives
you the flexibility to add new applications or new data sources, you
are in an excellent position to be able to capture targets of opportu‐
nity. These are opportunities to capture value to that can arise on a
nearly spur-of-the-moment basis, either through insights that have
come from data exploration, through experimentation with new
design patterns, or simply because the right two people sat together
at lunch and came up with a great idea. With a system that gives you
flexibility, you can take advantage of these situations, maybe even
leading to a new line of business.

Although flexible systems and architectures are critical, it is equally
important that your organization has a flexible culture. You won’t
get the full advantage of the big data tools and data-intensive
approaches you’ve adopted if you are stuck in a rigid style of manag‐
ing human resources. We recently asked Terry McCann, a consul‐
tant with Adatis, a company that helps people get their big data
systems into production, what he thought was one of the most
important issues for production. Somewhat surprisingly, McCann
said the lack of a DevOps and DataOps approach is one of the big‐
gest issues because that can make the execution of everything else so
much more difficult. That observation is in line with a 2017 survey
by New Vantage Partners that highlights the major challenge for
success in big data projects as the difficulty of organizational and
cultural change around big data.
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Formula for Success
We have discussed goals important for big data systems if they are to
be production ready. You will want to see that there is a clear con‐
nection to business value and a clearly defined way to act on the
results of data-intensive applications. Data may need to be treated
with production care as soon as it is ingested if later it could be
required as a system of record or to serve as critical input for a pro‐
duction process, either now or in future. Reliability is an essential
requirement for production as well as the ability to handle scale and
speed as appropriate for your SLAs in production. Effective systems
take advantage of multitenancy but are not cumbersome to main‐
tain. They also should provide a good degree of flexibility, making it
easy to adapt to changing conditions and to take advantage of new
opportunities.

These are desirable goals, but how do you get there? We said earlier
there is no magic formula for getting value from big data in produc‐
tion, and that is true. We should clarify, however: there is a formula
for success—it’s just not magic.

That’s what we show you in Chapter 2: what you can do to deploy
into production successfully.
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CHAPTER 2

Successful Habits for Production

Success in production starts long before an application is deployed
to a production setting. The key is having a system with the simplic‐
ity and flexibility to support a wide range of applications using a
wide variety of data types and sources reliably and affordably at
scale. In short, when you’re ready for production, the system is
ready for you.

No doubt doing all this at scale is challenging, but it’s doable, it’s
worth it and you can get there from where you are. We’re not talking
about having a separate, isolated big data project but, instead, a cen‐
tralized design and big data system that is core to your business. We
also are not promoting the opposite extreme: to entirely do away
with traditional solutions such as Relational Database Management
Systems (RDBMS) and legacy code and applications. When done
correctly, big data systems can work together with traditional solu‐
tions. The flexibility and agility possible in modern technologies
make it appropriate for the big data system to be the backbone of
your enterprise. These qualities of flexibility and agility also make it
easier to make the transition to using big data approaches in your
mainstream organization.

To plan and build such a system for your business, it can help to see
what others have done that led them to success. In our “day jobs” we
work with a lot of people who have done this and have overcome the
difficulties. Almost all of the customers we deal with at MapR Tech‐
nologies—more than 90% of them—are in production. This is in
fairly stark contrast to the levels we see reported in surveys. For
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example, a 2018 Gartner report stated that only 17% of Hadoop-
based systems were deployed successfully into production, accord‐
ing to the customers surveyed (“Enabling Essential Data
Governance for Successful Big Data Architecture”). This made us
curious: Why are some people in production successfully and others
are not? In this chapter, we report the basic habits we observe in
organizations that are winning in production.

Whatever Happened to Hadoop?
For years many people equated “big data” with Hadoop, but we’re
talking about systems that go way beyond what Hadoop was
intended to do. Apache Hadoop was a great pioneer, popularizing
the idea that very large data sets could be stored and analyzed by
distributing data across multiple networked machines (a cluster)
making very-large-scale computing affordable and feasible for a
broader audience. But it always had limitations, especially as a file
system, for real time, and for non-Java programs. Legacy software
and common tools like R and Python could not easily access dis‐
tributed data stored on Hadoop Distributed File System (HDFS).
It’s as though there were a wall between the HDFS cluster and
everything else: you have to copy data out elsewhere to be pro‐
cessed and then copy results back. That’s just too limited and too
cumbersome to be the best choice, especially for production sys‐
tems and systems that have real-time needs.

Nowadays, Hadoop can be viewed as just one of many workloads
on a modern data platform, along with Spark and many others.
Hadoop is not what we have in mind as the central technology for
building large-scale, efficient systems.

Build a Global Data Fabric
One of the most powerful habits of successful data-driven busi‐
nesses is to have an effective large data system—we call it a data fab‐
ric—that spans their organization. A data fabric is not a product you
buy. Instead it is the system you assemble in order to make data
from many sources available to a wide range of applications devel‐
oped and managed by multiple users. The data fabric is what houses
and delivers data to your applications. This may exist across a single
cluster or it may span multiple data centers, on-premises or in a
cloud or multicloud, as suggested by Figure 2-1.
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Figure 2-1. Building a unified data fabric across a single cluster or
across geo-distributed data centers on-premises or in cloud (or multi‐
cloud or a hybrid of cloud/on-premises) is a huge advantage in getting
production grade performance from applications in a cost-effective
way.

As with a piece of cloth, you can identify or isolate any single fiber
of many, and yet together they act as one thing. A data fabric works
best when it is under one system of administration and the same
security mechanisms.

Edge Computing
Increasingly, it is important to be able to handle large volumes of
Internet of Things (IoT) data from many sensors being generated at
a high rate. In some cases, this data needs to be moved to data cen‐
ters; in other cases, it’s desirable to be able to do some edge process‐
ing near the data source and then move the results or partially
processed data to other data centers. We find customers who need to
do this in industries like telecommunications, oil and gas explora‐
tion, mining, manufacturing, utilities companies, medical technol‐
ogy, transportation and shipping, online global services, and even
smart shops in physical retail locations where real-time interactive
engagement with shoppers is the goal.
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Because data can come from many small data sources
such as IoT sensors, a data fabric needs to extend to
the edge, to handle raw data and to support edge appli‐
cations.

Data Fabric Versus Data Lake
We’ve all heard of the promises of the so-called “data lake”: the idea
that we would build a comprehensive and centralized collection of
data. The term “data hub” was often used when the focus was on
self-service analytics. A data fabric is a new and larger idea, not just a
new term for a data lake or data hub. Here’s why that matters.

The power of a data lake was to preserve raw data—structured and
unstructured data—and, most important, to see across data silos,
but there was a danger of the data lake becoming yet one more huge
silo itself. People often assumed that the data lake needed to be built
on Hadoop (HDFS), but that automatically limited what you could
do, setting up barriers to widespread and facile use, thus increasing
the risk of siloing. Due to lack of standard interfaces with HDFS,
data must be copied in and out for many processing or machine
learning tasks, and users are forced to learn Hadoop skills. A data
lake that is difficult to access can fall into disuse or misuse, either
way becoming a data swamp. There’s also a need to extend the lake
beyond one cluster, to move computing to the edge, and to support
real-time and interactive tasks, as we’ve already mentioned.

In contrast, building a data fabric across multiple clusters on-
premises or in the cloud and extending it to edge computing gives
you the benefits of comprehensive data without forcing everything
to a centralized location. A data fabric built with technologies that
allow familiar kinds of access (not limited to Hadoop APIs) plus
multiple data structures (i.e., files, tables, and streams) encourages
use. This new approach is especially attractive for low-latency needs
of modern business microcycles. There’s another advantage: The use
of a modern data fabric helps because part of the formula for success
in a comprehensive data design is social rather than technical. You
need to get buy-in from users, and a simpler design with familiar
access styles makes that much more likely to happen. A data fabric
that is easy to maintain helps you focus on tasks that address the
business itself.
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This is important, too: your data fabric should let you distribute
objects such as streams or tables across multiple clusters. Consider
this scenario. A developer in one location builds an application that
draws on data from a topic in a message stream. It is important for
the developer to be able to focus on goals and Service Level Agree‐
ments (SLAs) for the application rather than having to deal with the
logistics of where the data originated or is located or how to trans‐
port it. It’s a great advantage if stream replication can let you stream
live both locally and in a data center somewhere else without having
to build that in at the application level, as depicted in Figure 2-2. It’s
the same experience for the application developer whether the data
is local or in another location. We talk about a data platform with
this capability in Chapter 4.

Figure 2-2. With efficient geo-distributed stream replication, the devel‐
oper can focus on the goals of the application and the insights to be
drawn from data rather than having to worry about where data is
located. The data source thinks of the stream as local and so does the
consumer, even though there may be an ocean between them. A simi‐
lar advantage could be gained through table replication in a global
data fabric.

This separation of concerns between developers and data scientists
on the one hand versus operations and systems administrators on
the other is a huge benefit, making all parties more productive. The
head of a data science team at one of our customers found this to be
extremely valuable. His business deals with a globally distributed
online service, and his team’s applications were responsible for col‐
lecting metrics and making the data available for business-critical
billing. Having taken advantage of stream replication (and thus not
having to build these logistics in at the application level), he com‐
mented that after just a few months he felt he had “a year of devel‐
oper time in the bank.” That’s a good situation to be in!
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Understand Why the Data Platform Matters
A modern data platform plays an enormous role in either setting up
for success in production or, if it lacks the right capabilities, creating
barriers. There are a number of things the data platform in a suc‐
cessful production deployment does, but, surprisingly, one of the
most important is for the platform to fade from view. What we mean
is that a good platform does what needs to be done without getting
in the way. Consider the analogy of a professional tennis player
about to hit the ball. The player needs to have all attention focused
on the ball and on their shot rather than thinking about the racket:
has it been strung properly? Is the tension correct? Can the strings
withstand the impact? A top player’s racquet is, no doubt, an excel‐
lent one, but during a shot, it is like an unconscious extension of the
hand and arm. Similarly, if your job is to build and run applications
or models or to draw insights, you shouldn’t need to spend a lot of
effort and time on dealing with platform issues or with building
steps into applications that should have been handled by the plat‐
form.

Just as there are a number of common capabilities that essentially all
services need for managing containers, network names, and such,
there are also common capabilities that almost all services need
from a data platform.

The idea that all of container orchestration would be implemented
once by Kubernetes is becoming a bog standard design. The same
argument applies to factoring out data capabilities into a single data
platform that serves as a kind of uber-service for all other services.
In contrast, having services implement their own data layer causes a
large amount of unnecessary and repetitive effort just as does having
every service implement its own container management.

What other roles does the data platform need to fill to build a data
fabric that supports development and production? One very impor‐
tant one is ease of data access, for multiple types of data. We have
pointed out that one thing that turns a data lake into a swamp is
inaccessibility. For example, it is a huge advantage to be able to talk
about files, tables, or streams by name and to organize them
together in directories. This gives you a coherent way to refer to
them in applications, between applications, or between users. Sim‐
plicity such as this lessens the chance for errors and reduces dupli‐
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cated effort. In Chapter 4 we describe a data platform with this
capability.

Another key requirement of data access is to not have to copy every‐
thing out of the data platform for processing and then copy results
back in. That was one of the big problems with Hadoop-based sys‐
tems, especially for production. It was as though a big wall stood
between the data and whatever you wanted to do with it—you had
to keep copying it out over the wall to use it and then throw the
results back over the wall. That barrier stood in the way of using leg‐
acy applications and familiar tools. It required Hadoop specialized
skills just to access data. And Hadoop systems couldn’t meet the
requirements of real-time or low-latency applications that are so
widely needed for the pace of modern business cycles. The ideal
production-ready big data platform should be directly accessible via
traditional as well as new APIs, be available for development and
production applications simultaneously, and support low-latency or
real-time applications.

The effective data platform is ubiquitous, letting you use the same
platform across data centers on-premises, from IoT edge to center,
and to cloud or multi cloud. This ubiquity streamlines your overall
organization and architectures, and, as we mentioned in Chapter 1,
simplicity such as this reduces risk and generally improves perfor‐
mance. And of course, a good platform is reliable, cost-effective for
highly distributed very-large-scale data, supports multitenancy,
gives you confidence about security, and provides adequate mecha‐
nisms for disaster recovery.

These are the high-level ways in which a data platform supports
building a data fabric and helps you get your applications produc‐
tion ready. Keep in mind that as your projects expand or you add
new projects or new lines of business, your data platform should
support what you are doing without a lot of workarounds or sprawl.
Returning to our tennis metaphor, if you find yourself thinking
about your racquet too much, that’s a red flag: you should rethink
your platform and your architecture, because overly complicated is
not inevitable in large-scale systems.
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Capabilities and Traits Required by the Data Platform
Happily, there is a pretty strong consensus about what a platform
should do and how those capabilities should be accessed. So, here
are the first three requirements for a modern data platform:

• A data platform must support common data persistence pat‐
terns, including files, tables, and streams

• The platform must support standard APIs including:
— POSIX file access for conventional program access to shared

files
— HDFS API access for Spark, Hadoop, and Hive
— Document-oriented NoSQL
— Apache Kafka API for streaming

• Performance must be very high, especially for large-scale dis‐
tributed programs. Input/output (I/O) rates ranging from hun‐
dreds of GB/s up to tens of TB/s are not uncommon. Message
rates of millions to hundreds of millions per second are not
uncommon.

Note that POSIX file access is effectively the same as allowing con‐
ventional databases because Postgres, MariaDB, mySQL, Vertica,
Sybase, Oracle, Hana, and many others all run on POSIX files.

It is also common that companies have distributed operations that
are distant from one another. Even if operations are not geo-
distributed, it is common to have a combination of on-premises
compute plus cloud compute or to require cloud vendor neutrality.
Some companies have a need for edge computing near the source of
data on a factory line, on trucks or ships, or in the field. All of these
require that the data platform grow beyond a single cluster at a sin‐
gle location to support a bona fide data fabric.

This leads to the next requirement:

• Put data where you want it but allow computation where you
need it. This includes supporting data structures that span mul‐
tiple clusters with simple consistency models.

If a data platform is to provide common services to multiple teams,
avoiding duplication of effort, and improving access to data, there
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has to be substantial reuse of the platform. This means that the data
platform is going to have to support many applications simultane‐
ously. In large enterprises, that can reach into the hundreds of appli‐
cations. To do this, it is important to:

• Enforce security at the data level using standard user identity
management systems and familiar and consistent permission
schemes

• Support multitenancy by automatically isolating load where
possible and providing manual management capabilities to
allow additional administrative control over data placement and
use of high-performance storage

• Operate reliably for years at a time

One fact of life for modern businesses is that they need to explore
and (as soon as possible) exploit machine learning and AI to help
automate business decisions, particularly high-volume decisions
that are difficult for humans to make. Machine learning systems
require access to data from a variety of sources and have many par‐
ticularly stressful I/O patterns. Essentially all emerging machine
learning frameworks use standard file access APIs, but they often
use certain capabilities such as randomly reading data from very
large files that ordinary I/O systems find difficult to support.

• Support machine learning and AI development by transparent
access to a wide variety of data from other systems and support‐
ing standard POSIX APIs at very high levels of random reads.

Finally, it is common to overlook the fact that there is a lot of ancil‐
lary data associated with the analysis of large distributed data. For
instance, there are container images, configuration files, processing
status tables, core dumps, log files and much more. Using the same
data platform for data and for housekeeping makes total sense and
simplifies operations tremendously. All that is needed to support
this are POSIX APIs, so no bullet point is needed, but a reminder
definitely is.

In summary, the data platform plays an essential role in building the
data fabric that you will need to move seamlessly to production
deployments. It’s not just the need to store data (in a variety of data
structures) at scale in a cost-effective way that matters. The role of
the effective modern data platform also includes supporting a wide
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variety of access modes including by legacy applications and using
familiar processing tools. And that leads our thinking back to the
running of applications and how that can be managed at a
production-ready level.

Orchestrate Containers with Kubernetes
When you build a production analytic system, there are two major
halves of the problem. One half is the data, for which issues of scale,
redundancy, and locality should be handled in a data platform as we
have described. But the other half of the problem is the analytics:
actually running the software to analyze the data. Analytics applica‐
tions require a lot of coordination. One reason is that because the
data involved is large, analyzing it often requires many computers
working together in a well-coordinated fashion. There are probably
many small parts of the computation, too. There are tons of non-
analytical but data-dependent processes that need to be run as well.
Getting large programs and small, I/O-intensive or CPU-intensive,
low-latency, and batch to all run together is daunting. You really
need to not only develop ways of efficiently orchestrating your ana‐
lytics and AI/machine learning applications but also of having them
coexist with other processes that are essentially “running in the
background.”

All of this implies that we need to have an analog of the data plat‐
form, what you might call a process platform, to coordinate pieces of
applications. Given the increasingly widespread containerization of
applications, it’s essential to have a way to coordinate processes run‐
ning in containers. The good news is that based on their experience
building the world’s biggest and most distributed big data produc‐
tion system out there, Google decided to open source Kubernetes.
Kubernetes coordinates the execution of programs across a cluster
of machines in pretty much the way that is needed for large-scale
data analysis.

The way that Kubernetes works is that large-scale services are bro‐
ken down into subservices that are ultimately composed of tightly
bound groups of processes that run inside containers. Containers
provide the ability to control most of the environment so that pro‐
grams with different environmental requirements (such as library
versions and such) can be run on the same machine without con‐
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flicts. Kubernetes orchestrates the execution of containers arranged
as systems across a pool of computers.

Kubernetes purposely does not manage data persistence. Its role is
to act as a container orchestration system that only manages where
containers run and limits how much memory and CPU is available
to a container. You really don’t want to persist state in normal con‐
tainers. The container is intended to be ephemeral, which is a key
aspect of its flexibility; data should (must) outlive the container in
order to be useful. The management of persistent data, whether in
the form of files, databases, or message streams, is essential for many
applications (stateful applications) that will be run in containers.
The issue arises because applications generally need to store data to
access later or so that other applications can access it later. Purely
stateless applications are of only very limited utility. Kubernetes pro‐
vides methods for connecting to different data storage systems, but
some sort of data platform needs to be supplied in addition to
Kubernetes itself.

The combination of a modern data platform working
in concert with Kubernetes for container orchestration
is a powerful duo that offers substantial advantages for
production deployments.

Containers managed by Kubernetes can have access to local data
storage, but that storage is generally not accessible to other contain‐
ers. Moreover, if a large amount of data is stored in these local data
areas, the container itself becomes very difficult to reprovision on
different machines. This makes it difficult to run applications with
large amounts of state under Kubernetes, and it is now generally
viewed as an anti-pattern to store large amounts of state in local
container storage.

There is an alternative. Figure 2-3 shows a diagram of how several
applications might interact. Application 1 reads a file and uses a
direct remote procedure call (RPC) to send data to Application 2.
Alternatively, Application 2 could read data that Application 1 writes
to a message stream. Application 2 produces a log file that is ana‐
lyzed by Application 3 after Application 2 has exited. If these appli‐
cations all run in containers, storing these files and the stream
locally is problematic.
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Figure 2-3. Three applications that communicate using files and a
stream. Each of these applications needs to persist data, but none of
them should persist it inside their own container.

Figure 2-4 demonstrates a better way to manage this situation. The
applications themselves are managed by Kubernetes, whereas the
data that the applications create or use is managed by a data plat‐
form, preferably one that can handle not only files, but also streams
and tables, in a uniformly addressable single namespace.

Figure 2-4. The applications are now run in containers managed by
Kubernetes, but the data they operate on is managed by a data plat‐
form. This is the preferred way to manage state with Kubernetes.

Note that the output Application 1 writes to a stream can be used
not only by Application 2 but also by some other as yet unknown
application running on the same platform.

Key requirements of the data platform are that it must do the follow‐
ing:

• Abstract away file location so that containers need not worry
about where their data is. In particular, there must be a consis‐
tent namespace so that containers can access files, streams, or

32 | Chapter 2: Successful Habits for Production



tables without knowing anything about which machines host
the actual bits.

• Provide sufficient performance so that the applications are the
only limiting factor. This might even require collocating data
with some containers that demand the highest levels of perfor‐
mance.

• Allow access to data no matter where a container is running,
even if a container is moved by Kubernetes.

• Provide reliability consistent with use by multiple applications.

Pairing a data platform with a container orchestration system like
Kubernetes is a great example of success through separation of con‐
cerns. Kubernetes does almost nothing with respect to data plat‐
forms other than provide hooks by which the data platform can be
bound to containers. This works because the orchestration of com‐
putation and the orchestration of data storage are highly comple‐
mentary tasks that can be managed independently.

Extend Applications to Clouds and Edges
The combination of Kubernetes to orchestrate containerized appli‐
cations and a data platform that can work with Kubernetes to persist
state for those applications in multiple structures (i.e., files, tables,
streams) is extremely powerful, but it’s not enough if it is able to do
so for only one data center. That’s true whether that one location is
in the cloud or on-premises. The business goals of many modern
organizations drive a need to extend applications across multiple
data centers—to take advantage of cloud deployments or multicloud
architecture—and to go between IoT edge and data centers. We see
organizations in the area of oil and gas production, mining, manu‐
facturing, telecommunications, online video services, and even
smart home appliances that need to have computation that is geo‐
graphically distributed to match how their data is produced and
how it needs to be used. Something as fundamental as having multi‐
ple data centers as part of advance planning for disaster recovery
underlines this need. What’s the best way to handle the scale and
complexity associated with multiple required locations and to do so
in a cost-effective way?

Let’s break this down into several issues. The first is to realize that
the journey to the cloud need not be all at once. It may be preferable
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for systems to function partly on-premises and partly in cloud
deployments, even if the eventual intent is a fully cloud-based sys‐
tem. A second point to keep in mind is that cloud deployments are
not automatically the most cost-effective approach. Look at the sit‐
uations shown in Figure 2-5. A hybrid on-premises plus cloud
architecture can have benefits for being able to best optimize com‐
pute resources for different workloads in a cost-effective manner.

Figure 2-5. Although cloud deployments may be cost-effective for
bursts of computation, base load often is better off in an on-premises
data center. For this reason, an efficient hybrid architecture may be
optimal. Similarly, optimization sometimes calls for having computa‐
tion and data in edge locations as well as multiple clouds and on-
premises data centers.

What you need to handle all these situations, including edge deploy‐
ments, is to make sure your data platform is designed to handle geo-
distribution of data and computation in a cost-effective way that is
reliable and meets SLAs. That means having effective and easily
administered ways to mirror data (files, tables and streams) and
preferably to have efficient geo-distributed stream and table replica‐
tion as well. The same platform should extend across multiple cen‐
ters and be able to interact with Kubernetes across these geo-
distributed locations. It’s not just about data storage but also about
built-in capabilities to coordinate data functions and computation
across these locations securely. This use of edge computing is a basic
idea that is described in more detail as one of the design patterns
presented in Chapter 5.

The good news is that even though widespread use of Kubernetes in
on-premises data centers is a relatively new, it is spreading rapidly.
And for cloud deployments, Kubernetes already is, as of this writing,
the native language of two of the three major cloud vendors, so
using it in the cloud isn’t a problem. The issue is to plan in advance

34 | Chapter 2: Successful Habits for Production



for these cross-location deployments both in your architecture and
in the capabilities of your data platform. Even if you start with a sin‐
gle location, this geo-distribution of applications is likely what you
will need as you go forward, so be ready for it from the start.

Use Streaming Architecture and Streaming
Microservices
Often, the first reason people turn to event-by-event message
streaming is for some particular low-latency application such as
updates to a real-time dashboard. It makes good sense to put some
sort of message queue ahead of this, as a sort of safety measure, so
that you don’t drop message data if there is an interruption in the
application. But with the right stream transport technology having
the right capabilities—as do Apache Kafka or MapR Streams—
stream transport offers much more. Streaming can form the heart of
an overall architecture that provides widespread advantages includ‐
ing flexibility and new uses for data along with fast response.
Figure 2-6 shows how stream transport of this style can support sev‐
eral classes of use cases from real time to very long persistence.
We’ve discussed these advantages at length in the short book Stream‐
ing Architecture (O’Reilly, 2016).
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Figure 2-6. Stream-first architecture for a web-activity-based business.
A message stream transport such as Apache Kafka or MapR Streams
(shown here as a horizontal cylinder) lies at the heart of an overall
streaming architecture that supports a variety of use case types. Group
A is the obvious use, for a real-time dashboard. Group B, for archived
web activity or Customer 360, is also important. Applications like
security analytics (group C) become possible with long-term persis‐
tence.

Streaming is not the only way to build a data fabric, but stream-
based architectures are a very natural fit for a fabric, especially with
efficient stream replication, as mentioned in the previous section. In
addition, message stream transport can provide the lightweight con‐
nection needed between services of a microservices style of work
(see also “Streaming Microservices” by Dunning and Friedman in
Springer’s Encyclopedia of Big Data Technologies [2018]). The role of
the connector, in this case a message stream, is to provide isolation
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between microservices so that these applications are highly inde‐
pendent. This in turn leads to a flexible way to work, making it
much easier to add or replace a service as well as support agile
development. The producers in Figure 2-7, for instance, don’t need
to run at the same time as the consumers, thus allowing temporal
isolation.

Figure 2-7. Stream transport technologies in the style of Apache Kafka
exhibit high performance at scale even with message persistence. As a
result, they can help decouple multiple data producers from multiple
consumers. This behavior makes stream transport a good connector
between microservices.

A microservices style is a good design for deployment to production
as well as making development easier and agile. We’ve talked about
the importance of flexibility in production, making it easier to make
changes and respond to new situations. Microservices is also valua‐
ble because being able to isolate services means that you isolate
issues. A problem in one service does not necessarily propagate to
other services, so the risk (and blast radius) is minimized.

Commonality Versus Isolation (Independence): You
Need Both

It may sound like a contradiction to say that there’s a strength in the
commonality offered by a global data fabric yet you still want the
isolation and independence offered by microservices, but in a suc‐
cessful production design, you want both, just at different levels.
Commonality is important for a comprehensive view of data, avoid‐
ing duplicated effort, easy use of multiple data structures, and
deploying applications where you need them from edge to center to
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cloud, under the same administration and security. Isolation at the
level of microservices means that teams can work well and inde‐
pendently, that they can organize and protect their data and that
new services can be introduced quickly with the least disturbance to
other systems.

Commonality and isolation, each at the right level, provide a bal‐
anced, stable, and flexible system.

The idea of stream-first architecture is being put to work in real-
world situations. We know a customer, for example, who built a
stream-based platform used in production to handle the pipeline of
processes for finance decisions. This stream-based approach was
used mainly because of the need for fast response and agility. But
keep in mind that there are many reasons, as we have mentioned,
other than just latency to motivate choosing a streaming architec‐
ture.

Cultivate a Production-Ready Culture
Using new technologies with old thinking often limits the benefits
you get from big data and can create difficulties in production. Here
are some pointers on how to have good social habits for success in
production.

DataOps
DataOps extends the flexibility of a DevOps approach by adding
data-intensive skills such as data science and data engineering—
skills that are needed not only for development but also to deploy
and maintain data-intensive applications in production. The driving
idea behind DataOps, as with DevOps, is simple but powerful: if you
assemble cross-skill teams and get them focused on a shared goal
(such as a microservice), you get much better cooperation and col‐
laboration, which in turn leads to more effective use of everyone’s
time. DataOps cuts across “skill guilds” to get people working
together in a more goal-focused and agile manner for data-intensive
projects. Figure 2-8 schematically illustrates the organization of
DataOps teams.
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Figure 2-8. A DataOps style of work provides cross-skill teams (hori‐
zontal ovals), each focused on a shared goal. This diagram depicts
teams for different applications (teams for Projects 1–3) as well as the
separate teams for platform-level services (Kubernetes and the data
platform). Note how the platform teams have very different skill mix
than the other teams.

The key ingredients for DataOps are the right mix of skills, the con‐
cept of pulling together toward the common goal as opposed to
strict reporting based on departmental divides and much better
communication. Better communication is natural in this design
because it changes the normal lines of communication and avoids
great walls between skills that can be caused by slow-downs waiting
for interdepartmental decisions.

A DataOps style of work does not mean having to hire lots of new
people for each role. Generally, it involves rearranging assignments
to better focus people in cross-functional teams. In some cases, peo‐
ple with particular data skills (such as data scientists or machine
learning experts) might be temporarily embedded in an operations/
engineering team. The mix of roles will naturally evolve as you go
from development teams to production teams. Generally, there are
fewer data scientists in a production team than in a development or
exploration team.
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Making Room for Innovation
A well-designed organizational culture not only provides for agility
and flexibility. People also must be free to explore and experiment. A
no-fail policy is a no-innovation policy. It’s usually not practical to
do unbounded experimentation, but to support innovation you do
need to recognize that deliverables can be about more than just
products: experience with new technologies and advance testing of
new lines of business can be targeted as deliverables.

Remember: IT Does Not Have a Magic Wand
We have seen a pattern of failure where a development group gets
the DevOps religion, builds a complex service, and puts it “into pro‐
duction” by slapping an SLA onto it and launching the service but
leaves hazily defined critical tasks to the IT department. Commonly,
the next thing that happens is that the service turns out to be less
reliable than expected, and an IT group gets involved in running it
(but that doesn’t help much).

Obviously, one problem here is that you should declare SLAs before
you build something if you actually want them to be met, but that
isn’t really the ultimate cause of failure here. Some people will
respond to these stories by blaming the basic idea of a dev and ops
team being fused together into DevOps, but that doesn’t really
describe what happened, either.

There is often a deeper issue in these cases. What happens is that
when the original team starts building its system, it winds up taking
on responsibility for core platform components such as storage,
database, or message queuing on top of building the service that it is
supposed to focus on. This sounds like the soup-to-nuts kinds of
things that DevOps teams do, after all. As the project progresses,
however, that core focus becomes more and more elusive because
managing a platform as a side hustle doesn’t really work very well.
As deadlines loom, more and more development effort is siphoned
into operational issues resulting in the design, implementation, and
testing of the core service getting short-changed. By the time the
service is delivered, the resulting problem is practically inevitable.

The core problem here is that DevOps and DataOps teams shouldn’t
be duplicating efforts on building duplicative platforms. This idea is
indicated in Figure 2-8. The real lesson of the cloud revolution is

40 | Chapter 2: Successful Habits for Production



that it is a waste of time for application teams to be solving the same
platform problems over and over (and doing it poorly because it
isn’t their focus). Public clouds have been successful precisely
because they draw a sharp line between infrastructure and applica‐
tion. Due to limits of available technology, that line was drawn a tiny
bit lower in the stack than it should have been, at least initially. The
balance that Google struck with services like storage and tables
being part of the platform appears to be where things really ought to
be.

The good news is that this is exactly what you can do with modern
systems.

Putting It All Together: Common Questions
Now that you’ve seen the ingredients of a formula for success in pro‐
duction—the commonality of a global data fabric, the role of the
data platform and technologies like containerization and Kuber‐
netes, the flexibility of streaming microservices and of DataOps—
here’s a few thoughts about how to put those concepts to work in the
form of some common questions and answers about how to get big
data into production.

Can You Manage End-to-End Workloads?
Managing means measuring and controlling. In real-world produc‐
tion systems, however, multitenancy adds the complication that
there are lots of workloads active at once, so we need be able to
detect and control interactions. Real-world systems also have to deal
with ongoing hardware failures and the background loads due to
recovery efforts. This means that just managing individual work‐
loads in isolation isn’t sufficient. Realistically, in production you also
need to manage these implied workloads at the same time. For
instance, if there is a disk or controller failure outage, a competent
system will have built-in ways to re-replicate any lost data. That’s
great, but that re-replication will cause a load on your system that
competes with your applications. You have to plan for both kinds of
load and you have to measure and manage both as well as interac‐
tions between loads. In an advanced system, the implied loads will
be managed automatically; less advanced systems require manual
recovery (Kafka, Gluster, Ceph) or lack throttling of recovery loads
(HDFS).
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Kubernetes helps you orchestrate when and where applications run,
the implied use of containerization helps with this by isolating envi‐
ronments in terms of dependencies. Kubernetes is mostly a control
mechanism, however, and is limited to controlling the computation
side of things.

You also need to have comparable control on the data side of things.
Effectively, what you need is Kubernetes, but for data. So, although
Kubernetes allows you to control where processes run, avoid too
much over-subscription of compute and memory resources and to
isolate network access, your data platform should let you control
where your data actually is, to avoid oversubscribing storage space
and I/O bandwidth and logically isolate data using uniform permis‐
sion schemes.

But all that control is nearly worthless if you are flying blind. As
such, you need to be able to measure. Obviously, you need to know
how much data you have and where it is, but you should also be able
to get comprehensive data about I/O transfer rates and latency dis‐
tributions per node, per application and per storage object.

How Do You Migrate from Test to Production?
If you’ve designed and built your organization according to the
guidelines we’ve described, you laid the groundwork for this migra‐
tion long before your application was ready to deploy: you’ve treated
data appropriately for in-production status from early on (where
that matters) and you are operating within a global data fabric, with
much of the logistics handled by your platform.

This means that you have what you need to be able to migrate to
production. Keep in mind that this migration is not just a matter of
unit testing but also of integration testing—making certain that the
various parts of a particular application or interactive processes will
work together properly. One way to do that is to have a system that
lets you easily light up a production-like environment for testing:
Kubernetes, containers, and a data platform that can persist state for
applications help with this, particularly if they are all part of the
same system that you will use in production. Using a stream as a
system-of-record also makes it easier to pretest and stage migration
to production because it is so much easier to replay realistic opera‐
tions for testing.
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Can You Find Bottlenecks?
We’ve argued for simplicity in both architecture and technology, for
a unified data fabric, and for a unified data platform with the capa‐
bilities to handle a lot of the burden of logistics at the platform level
rather than application level. This approach helps with finding (and
fixing) bottlenecks. A simple system is easier to inspect, and an
inspectable system is easier to simplify. Good visibility is important
for determining when SLAs are missed and a good historical record
should allow you to pinpoint causes. Was it bad design that caused
hot-spotting in access to a single table? Was it transient interference
with another application that should be avoided by better schedul‐
ing or moving loads around? This is important because you should
operate with the philosophy that the default state of all software is
“broken” and it’s up to you to prove it’s working.

You need to record as much of the function of your system as you
can so that you can demonstrate SLA compliance and correct func‐
tioning. Your data and execution platforms should help you with
this by providing metrics about what might have been slowing you
down or interfering with your processes.

To meet this pressure, not only is a simpler system useful but so is
having a comprehensive system of record. Having a persisted event
stream, change data capture (CDC) for a database, and an audit sys‐
tem for files are various ways to do this. Some of the most successful
uses of big data that we have seen record enormous amounts of data
that can used to find problems and to test new versions as they are
developed.
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CHAPTER 3

Artificial Intelligence and Machine
Learning in Production

Machine learning and artificial intelligence (AI) have become main‐
stream processes for many businesses because of their considerable
potential to unlock value from big data. In light of this fairly new
and increasing interest, we focus this chapter on AI and machine
learning as a special example of big data in production. That is not
to say that these processes stand apart entirely from what matters for
all data-intensive applications in production. The same concerns,
goals, and habits of best practice that we’ve already presented apply
here, as well, but in several ways AI and machine learning shine a
stronger light on some aspects of production. And in some cases,
there are special requirements imposed by the special needs of AI
and machine learning applications. Our goal is to give you practical
pointers that can help make these systems a success in production
applications.

AI and machine learning are favorites of ours. We’ve cowritten four
books on aspects of these topics (three of them for O’Reilly), and
one of us (Ted) has built a number of machine learning systems at
several different companies that ranged from recommenders for
music, video, or retail sales to detection and prevention of identity
theft. We’ve also seen how many MapR customers are using machine
learning and AI to extract value from their data in production
deployments. From all of this, we’ve figured out some of the things
that make a big difference for those people who are getting these
systems to work well, and that’s what we highlight in this chapter. It’s
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neither a checklist of how to build an AI or machine learning system
nor a detailed lesson in data science. It is a collection of key insights
that you could put to advantage in your own situation. Hopefully
you’ll find something useful whether you’re a seasoned data scientist
or someone just starting out.

Often people think of the algorithm used for learning as the thing
that matters most for a successful machine learning system. But for
serious AI and machine learning systems in production, the logistics
of machine learning—managing data at all stages and multiple mod‐
els—has far more impact on success than does the specific choice of
learning algorithm or the model itself. Put another way, if you train
the best possible model, but you cannot handle the logistics in a reli‐
able, agile, and predictable way, you will be worse off than if you
have a mediocre model and good logistics.

90% of the effort in successful machine learning is not about the algo‐
rithm or the model or the learning. It’s about the logistics.

—From Machine Learning Logistics by Dunning and Friedman
(O’Reilly, 2017)

Our data science friends tend to keep at least four or five favorite AI
and machine learning tools in their tool kit because no single spe‐
cialty tool or algorithm is the best fit for every situation. In addition,
an organization likely will have more than one machine learning
project in play at a given time. But the need to effectively handle
logistics cuts across all these choices, and the logistical issues are
surprisingly similar. That makes the data platform itself, working in
concert with Kubernetes, the best tool for AI and machine learning
overall. That’s good news. You don’t need to handle all this at the
application level or build a separate system for each project. This, in
turn, frees up data scientists and data engineers to focus more on the
goals of the AI or machine learning itself. (For more on this topic,
see the article “TensorFlow, MXNet, Caffe, H2O: Which ML Tool is
Best?”). In addition to the platform and application orchestration
technologies, you will need an architectural design that simplifies
logistics, supports multiple models and multiple teams easily, and
gives you agility to respond quickly as the world (and data) changes,
as indeed it will.

Logistics are not the only issue that matters for success. Connecting
AI and machine learning projects to real business value is of huge
importance. And the social structure of your organization makes a
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big difference, as well. Throughout the first part of this chapter, we
examine these and other things (beyond the algorithms) that matter
for success in AI and machine learning systems. In the second sec‐
tion of the chapter, we suggest specific new methods to deal with
them.

What Matters Most for AI and Machine
Learning in Production?
Machine learning and particularly AI are not well-defined terms,
and there is considerable overlap. In both cases, models are usually
built to make decisions and, in most cases, learn from training data
to perform their desired task. Sometimes, the decisions represent
tasks that humans can do. Other times, a system built using machine
learning goes beyond what is feasible for humans due to the com‐
plexity of the problem, or the scale of data that must be considered
during training, or the required speed. AI is sometimes used to refer
distinctively to machine learning systems that mimic complex and
sophisticated human-like performance, such as classifying objects in
images, speech recognition, or the interactive real-time processes
required for autonomous cars to interact safely with their environ‐
ment. For ease of discussion, from here on we will just use the gen‐
eral term “machine learning” unless there’s a specific reason to
distinguish AI from machine learning.

Getting Real Value from AI and Machine Learning
What about value? Big data and new technologies have opened a
whole new spectrum of opportunities using machine learning in
mainstream business processes that previously were not practical.

The excitement around machine learning has people looking for
new opportunities to use it to do new things, either by opening up a
new line of business or by enhancing an existing line in previously
impossible ways. For example, we have large industrial customers
who use machine learning to identify complex patterns in Internet
of Things (IoT) sensor data that can serve as potential “failure signa‐
tures”—patterns that signal an impending equipment failure some‐
times weeks before the event. This process is known as predictive
maintenance. This wasn’t possible prior to the use of machine learn‐
ing with large-scale data, and it decreases unplanned outages and
decreases the cost of planned maintenance.
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Another example of doing something new using machine learning is
one we observed with one of our large financial customers. Its data
science team built a recommendation system based on customer
transactions in order to provide personalized offers for its credit
card customers. This recommendation service has proven very pop‐
ular and valuable for the company, providing significant net new
revenue. Other customers breaking new ground include automobile
manufacturers that use very sophisticated machine learning to build
autonomous vehicles. At the same time, they are building better
monitoring and even some predictive maintenance capabilities into
vehicles that will be available soon.

In addition to the wide-open opportunities for doing new things,
some of the best value per effort from machine learning can come
from applying it to things your organization already does. Machine-
based decisions can be faster or more consistent than human deci‐
sions, and this can result in incremental value especially for
monotonous processes. These opportunities arise across all types of
enterprises, even those that also need machine learning for new pro‐
cesses. We have seen a large industrial customer use machine learn‐
ing to improve the boring but essential process of labeling
accounting charges for parts and services more accurately so that
they are correctly handled with regard to billing, reimbursements,
and tax reporting. This optimization might not sound exciting, but
it can save the company millions of dollars right now. An effective
data scientist knows to look for those places in existing business
processes where automation or optimization via machine learning
can offer a big return for small effort.

Whether machine learning is used for doing new things or to auto‐
mate preexisting processes and decisions, the model needs to fit the
requirements of the situation. In some cases, this means building a
complex model, but often a very simple model is plenty powerful.
We have customers in the medical field, for instance, using very
sophisticated models to help physicians analyze medical imaging
results. Similarly, the real-time interactive models such as those in
autonomous cars must be very complex. In contrast, the recommen‐
dation system we mentioned earlier, although very accurate, uses a
very simple approach. (see Chapter 5 for more on this, or we invite
you to read an earlier book of ours, Practical Machine Learning:
Innovations in Recommendation (O’Reilly, 2014).
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Not only can simple be powerful, it is intrinsically desirable. Prema‐
ture complexity in building a machine learning system can obscure
what is really happening and wastes time that you should be spend‐
ing on getting the infrastructure and logistics right. Getting compli‐
cated too early can cause you to miss opportunities for value by
getting bogged down on one problem while neglecting another. The
point is to recognize that simplicity is a virtue in and of itself; more
complex approaches should be used only when really needed.

The value to be derived from machine learning is not
proportional to the complexity or sophistication of the
model you use. Make the model as simple as it can be
and still do the job, but no simpler.

One thing that is surprisingly easy to forget when you get into the
details of making a model work is that a machine learning system
must connect to practical action that supports business goals. The
model might come up with a clever answer, but what action will you
take based on those insights? Or better, what action will be taken
automatically? Remember: a report is not an action. A machine
learning model that does not connect to practical actions for the
business is like a well-tuned motor spinning out of gear and thus
ineffective.

We close this discussion on getting value from machine learning
with an example that shows that there can be more than one level of
insight from a machine learning system. If you ask the right ques‐
tion and have access to the right data to support it, you could find
more valuable insights than you originally expect.

Fraud detection example: when a time machine would help
Fraud detection is a classic example where low latency decisions are
needed. This might be fraud in the form of a false credit card trans‐
action or in the form of a breached online account. The shorter the
time between the event when fraud occurs and the time that you
detect it, the sooner you can limit loss and perhaps find the perpe‐
trator. This time interval is depicted in part A of Figure 3-1. Fast
detection can certainly be valuable.
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Figure 3-1. Do you use machine learning just to detect fraud or to go
further—to learn how to recognize an earlier time when the fraud
might have been prevented? Detection is nice, but taking action to pre‐
vent it is better.

But how much more valuable is it to prevent the fraud from taking
place at all? Often (in a manner analogous to the preventive mainte‐
nance example), there are clues in behavior in advance of a fraud
attempt, perhaps seconds or minutes before the fraud event or dur‐
ing the transaction itself. With the right model, you might be able to
recognize a significant pattern in the window of time prior to the
fraud attempt, back when you could prevent the fraud and thus pre‐
vent any loss, as suggested by part B of Figure 3-1. To build a pre‐
vention model, you need to correlate what you knew at the moment
of prevention with the later outcome. But that is difficult, particu‐
larly because you can’t know to collect the data before you see the
fraud.

This situation happens commonly in the real world and is even
more challenging with many users and frauds at different times.
This means that the prevention windows all happen at different
times, as shown in Figure 3-2.
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Figure 3-2. In building a fraud prevention model that tracks multiple
users, you need to sample data from many different times when fraud
could have been predicted and prevented. Those times can only be
determined retrospectively, so you must collect this data in advance of
knowing the exact time points of interest.

The approach that gives you the best option in situations such as
these is to have retained event data even in advance of detecting
fraud. You need a comprehensive system of record that stores every‐
thing you knew and could have used. With a data platform having
capabilities such as we described in Chapter 2, this is surprisingly
doable. You can use something like change data capture (CDC) to
record changes in a table or, even better, a streaming system of
record. We describe both of these design patterns in Chapter 5. But
the key lesson here is that you need to have arranged to collect data
without knowing in advance exactly when data will be required. If
you don’t do this, you must extrapolate back to each prediction
point from the current time, which inevitably results in poorer
results.

The data you retain (and have access to) changes the
questions that you can ask.

What Matters Most for AI and Machine Learning in Production? | 51



As we’ve said in earlier chapters, it’s important to recognize that data
might need to be considered “in production” much earlier than peo‐
ple often think. The use of data time machines to retrospectively find
out which data is important is a great example of how this happens.

Data at Different Stages
A data-oriented business looks to data as a key decision-making tool
to inspire, validate, or contradict intuitions. Machine learning mod‐
els are creatures of data, and for that reason, a data-oriented organi‐
zation will find machine learning a relatively natural process. As we
described in Chapter 2, this type of organization can benefit from a
good data platform that works well with Kubernetes and containeri‐
zation of data-intensive applications.

On the other hand, a business that isn’t data oriented will typically
have a very difficult time getting good value out of machine learn‐
ing. This happens partly because an organization that does not con‐
sider data to be a key business asset will tend not to retain data in
the first place, nor will it put a priority on getting data right. Such an
organization won’t typically see as much value in a data platform.

Following are data characteristics that are needed in machine learn‐
ing:

• Comprehensive view of data
• Data from many sources and of different formats
• Flexibility to add new data sources easily
• Data accessibility for a wide variety of applications
• Large data volume
• Access to data as it was (both raw data and training data)

To expand on some of these points, consider this: data used to train
models (training data) generally is derived from, but is significantly
different from, raw data. Data scientists experiment with extracting
different features and evaluating how models perform with these
different options. Along the way, they learn about which data is not
relevant or useful for building a model, retaining the most useful
parts and discarding those parts that aren’t useful. Training data also
can be processed, aggregated, and combined with other data so that
it can be used as input to train a model. The same process happens
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with input data consumed by models in production. What data do
you need to preserve after you’ve deployed models to production?

The answer is that you should preserve data at different processing
stages, particularly raw data, even after the system is in production.
There are two good reasons for this. First, raw data has less possibil‐
ity for corruption due to buggy processing. Second, raw data is val‐
uable in part because later you might want to use features you would
have thrown away if you preserved only what you currently know to
be valuable. This situation is not unique to machine learning appli‐
cations, but given the way that machine learning systems must adapt
to a changing world and given how new machine learning techni‐
ques are often able to find new value in surprising features, being
able to go back to raw data to extract additional features is impor‐
tant.

In addition to having ongoing access to raw data, it’s also useful to
preserve training data exactly as it was for every model that at some
point could be destined to go into production. Preserving training
data this way is the exact analog to controlling source-code versions.
Being able to rebuild a model exactly is important for compliance
but just as valuable for debugging. When a model misbehaves in
some new way, you need to be able to answer whether to blame new
data or new code.

It’s important to have access to data as it was, not as we
think it was! Raw data should be recorded as it was and
training data should be frozen and tracked at the
moment of training.

It’s not usually possible to save absolutely all raw data, but there are
technologies that make it reasonable and affordable to save large
amounts of historical data, including files or streams, and make that
data accessible to multiple users. To make it truly accessible, the data
platform should make it easy to document and locate data versions
and the organization needs to cultivate good data habits.

The Life Cycle of Machine Learning Models
One of the things that may surprise people who are new to machine
learning is the fact that in real-world machine learning systems, the
life cycle of a model isn’t just one successful turn through planning,
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training, evaluation, and deployment. Put simply, the process isn’t
“won and done,” but instead is more like “a little better each and
every day.” Iteration is the rule.

Not only will you have multiple successive versions of a particular
model to manage over the life cycle from development to produc‐
tion, you’ll also have different models for different purposes, possi‐
bly hundreds, all being evaluated, modified, deployed, and
reevaluated, all at once. Most experienced data science teams try
many different approaches for the same goal, using multiple tools
and algorithms to develop their models. It makes sense to try many
models and tools because no single approach or tool is best for every
situation. In addition, even after high-performing models have been
deployed, you’ll still need an update. It’s not a matter of if the outside
world will change, it’s just a matter of when.

Discard the myth of the unitary model: real-world
machine learning systems involve large numbers of
models at every stage of the system. It’s almost never
just one.

Effective model management, as with data management, depends on
having good technology support for multiple scoring applications
and learning frameworks all working together.

Being effective at model management also requires that you collect a
lot of metrics about model performance, both in development and
in production. Is a model even running? Is it producing results with
acceptable latency? Is the general level and shape of input and out‐
put data what is expected? There are also the questions of how one
model’s performance compares to other models, in terms of accu‐
racy or usefulness of insights. To manage all this across many mod‐
els not only needs lots of metrics but also a history of decisions.

You’ll want to retain additional information about models—a kind
of tribal history. The features that work well in one model often are
good for others even if the models don’t do the same thing. Keeping
a “famous feature” list is a good practice, especially if it can spread
across multiple data science or DataOps teams. Code and data shar‐
ing are critical to foster this.

A final but very important issue in the life cycle of models is that
you should hold in reserve the ability to deploy new models very
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quickly as external conditions change, particularly if you are in an
adversarial situation against, say, fraudsters. Obviously, you need
lots of monitoring to be able to determine when external conditions
have changed, but for high-value cases, you might want to keep
some alternative models handy that were developed using very dif‐
ferent strategies than your primary models. These alternatives
should be ready to deploy at a moment’s notice. These models would
have already performed well on evaluation and just be “waiting in
the wings” to be used when needed. The point is that if attackers
find a hole in one model’s behavior, a different model can throw
them off balance by having different vulnerabilities.

In addition to continuous deployment, you also might consider
speculative execution. In this case, you not only have models ready
to deploy, you actually do deploy them and have them evaluate all
(or most) incoming requests. This lets you get some experience with
these alternative models in a completely realistic environment.
Because they are already producing results, you can switch over to
the secondary models at any time, even in the middle of a request.
This approach isn’t appropriate for all situations but in situations for
which it is reasonable, it can offer big advantages in agility and resil‐
ience. We talk later about the rendezvous architecture that takes this
to the limit.

Specialized Hardware: GPUs
If you take a cross section of all different kinds of businesses, there
are almost no really widespread business applications for Graphics
Processing Units (GPUs)—almost no application, that is, other than
machine learning. The reason is that what GPUs really do well is
numerical computing on a really massive scale. Outside of, say, Hol‐
lywood render farms and large-scale physical simulations of struc‐
tures, airflow, molecules, or drugs, there aren’t a lot of business
applications that require that level of numerical capability. Mostly,
GPUs are a science kind of thing. Those non-machine learning
applications that do tend to use GPUs are found in very particular
industries. Not so with machine learning, which is being used more
and more across a huge swath of industry segments and businesses.

But with machine learning, the advantage of GPUs is not at all a
hard-and-fast rule. For each problem, there is a real question about
whether they actually will help. Surprisingly, even though GPUs
have enormous potential speed for mathematical operations, there

What Matters Most for AI and Machine Learning in Production? | 55



are also substantial overheads, a sort of mathematical inertia. Com‐
putations also need to be arranged in a data-parallel way and have
limited amount of input/output (I/O), especially network I/O, per
unit of mathematical computation. You could even say that the
problem of machine learning logistics applies all the way down to
the hardware level.

Some machine learning algorithms, however, make very good use of
a GPU, and there can be an advantage of 10 times or more in terms
of number of machines required to train a model. However, for
other computations, ordinary processors can actually be faster than
GPUs for training models. The latter is particularly true if you are
training relatively simple models based on large amounts of training
data.

Training is one thing, though, and using a model is quite another.
Training is typically far more compute intensive than using a model
for inference, so it may be optimal to do training on GPUs. Using a
model, on the other hand, commonly, but not always, shifts the
advantage back to general purpose processors even if the GPU has a
substantial advantage for training.

This strong dichotomy about which kind of system is faster for
training or inferencing is even more tricky if you look at total cost
per useful computation rather than number of computers or elapsed
time.

The real lesson of all of this is that if you are serious about machine
learning, you should get access to some GPU horsepower (at least
for testing), but you probably won’t want to run everything on GPU
machines by a long stretch. Having a cluster where you have a
choice of hardware is the ideal situation.

Practically speaking, this implies that you need to account for spe‐
cial purpose machines in otherwise vanilla clusters. This, in turn,
puts demands on your data platform to support the ability to posi‐
tion data near (or far from) GPUs as well as to force programs to
run on GPU machines or to avoid them. The systems that we rec‐
ommend elsewhere in this book can generally meet these require‐
ments, but there are a number of big data systems that really don’t
deal well with these requirements because they don’t have any work‐
able concept of configurable data locality, nor can they deal easily
with clusters composed of non-uniform machines.
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Social and Teams
Much of what leads to successful deployment of machine learning
and artificial intelligence systems into production is really more
about people, communication, and organization than it is about the
technical side of things. This isn’t surprising given how much of the
problem really comes down to understanding what your data can
offer and the questions to ask as well as handling logistics. After all,
logistics problems are usually solved by teams with good communi‐
cation paths. There are, however, some surprising aspects of how
machine learning systems work that can make some of these com‐
munication issues even more important than they would be in a
more conventional application.

DataOps enhances business awareness
The biggest communications issue we have seen in machine learn‐
ing is that data scientists need to have a direct line to business value
stakeholders. This is exactly the kind of communication that a Data‐
Ops approach is intended to foster. Without this line of communica‐
tion, it is incredibly easy for data scientists to solve the wrong
problem. It might sound stupid, but there lots of opportunities for
this, and pretty much every experienced data scientist has stories
like this (even if they don’t like to talk about them). From our own
experience, for instance, there was a case in which we built a fraud
detection model that was producing awesomely good results.
Although that seemed like really good news, it turned out that the
model was predicting the contents of the column labeled “Fraud”
which was wasn’t actually fraud at all but was instead an indicator of
which fraud analyst had worked the case. The correct target had a
name something like “dummy53” because it was one of a number of
columns reserved for expansion in the schema of the database on
initial deployment. This situation was embarrassing, but it could
have been avoided if we had been part of a DataOps team. In that
case, the error likely would have been noticed early on by another
team member with a different knowledge base during model reviews
and early discussions. It was the relative isolation of our analytics
team from the business and data owners that allowed the error to go
undetected until after we delivered a nearly useless model.

A DataOps team organization doesn’t automagically give you the
communications you need, however. It is important to enhance that
communication with other tools such as model design reviews in
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which the builder of a proposed model walks through the planned
inputs, proposed features, the expected output, training plan and the
expected complexity of the model. Data engineers are very good
sounding boards for this kind of information given that they know
what data is available and typically have a good idea about how
model outputs can be used. Often it is helpful to use a tool such as
Jupyter or Zeppelin notebooks to facilitate these reviews. Having
active code available helps avoid the problem of slideware that
doesn’t match any actual code. These code reviews can also help to
get an earlier start on the development of pipeline steps that will
provide required inputs.

Remembering history
The process of building a new model is often highly iterative, which
often results in problems if the development history of a model is
not well documented. The issue is that problems in models are often
quite subtle and that can make them difficult to pin down. For
instance, there can be a bug in feature extraction code that gets
“fixed” in a way that makes the feature less useful to a model. Or
training data from a particular time period might be polluted by a
bot gaming your product. This is particularly problematic when
there are lots of design iterations. Unless you keep careful track so
that you can go back and test for bad assumptions, you can spend a
lot of time in the weeds. Is the training data collection broken? Is
feature extraction behaving wrongly? Is the training process being
stopped too soon? Or too late? Being able to exactly replicate past
work is incredibly important. It’s good practice to preserve your
code and snapshot your training data.

Methods to Manage AI and Machine Learning
Logistics
Model and data management is an essential and ubiquitous need
across all types of machine learning and AI. There’s more than one
way to handle it, but handle it well you must. Keep in mind some of
the most important challenges: to make a large volume of data from
a wide variety of data sources available to multiple models, to have a
way to go back to raw data and to know exactly what training data a
model saw, to manage many models running in predictable but dif‐
ferent environments without interfering with each other and to be
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able to quickly and easily roll new models into production (or roll
them back). You need an architecture and a data platform that let
you handle much of the boring but essential work of managing
logistics at the platform level rather than having to build it in to each
application. The good news is that with a good overall approach,
you don’t need to change the architecture and underlying technol‐
ogy you use to handle logistics with each different AI or machine
learning tool and each different project.

One new method for doing this easily for many types of AI and
machine learning systems is called the rendezvous architecture. It’s
not only a useful and innovative approach to managing logistics, it’s
also a good example of the basic principles of good architecture for
production. We describe key features of rendezvous in some detail
in the next section. After that, we provide a brief overview of other
emerging methodologies for managing logistics.

Rendezvous Architecture
Rendezvous architecture is a fairly new streaming microservices
architecture that takes advantage of key capabilities in a modern
data platform combined with containerization and Kubernetes to
provide a framework for deploying models. This design was intro‐
duced in 2017 and already has been implemented (and in some
cases with parts in production) by several groups we are aware of,
including teams at Lightbend, Adatis, and a large US financial com‐
pany. Rendezvous has been described in detail in our short book
Machine Learning Logistics: Model Management in the Real World,
(O’Reilly, 2017) and “Rendezvous Architecture” is an entry in The
Encyclopedia of Big Data Technologies, Sherif Sakr and Albert
Zomaya (eds.) (Springer International Publishing, 2018).

Rendezvous helps deploy models that solve synchronous decision‐
ing problems. The key characteristic is that the amount of request,
context, and state information for each request is relatively small, as
is the result. Systems of this type include credit risk analysis for
loans, flagging potential fraud in medical claims, marketing
response prediction, customer churn prediction, detection of energy
theft from smart meters, and systems to classify images through
deep learning models. Autonomous driving is a good example of a
problem that is not appropriate for rendezvous because the context
is large (the entire recent history, the physical state of the car, and
the contents of memory) and the responses are not bounded. Cer‐
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tain kinds of ad-targeting systems are not appropriate because of the
cost of speculative execution.

The most important point of the rendezvous architecture is to make
it easy to manage and evaluate multiple models at the same time and
to have some known-good models already running and whose
results are ready to be used easily and quickly when needed. This is
done by having all live models evaluate all requests and then having
a component known as the rendezvous server choose which of the
results to return. This choice is done independently for every
request by prioritizing the models against response time. Thus, a
preferred model might be given a substantial amount of time to
respond, but a response from a faster but less accurate backup
model would be kept handy in case and used only if the preferred
model doesn’t come through in time. This trade-off of preference
against time is encoded in the so-called rendezvous schedule.

With this system, roll out of a new model is easy. Start the model so
that it starts reading requests from the input stream and generating
results. Monitor it until you are confident that it is warmed up, sta‐
ble and accurate. Then, update the rendezvous schedule so that the
rendezvous server quits ignoring the new model. Figure 3-3 presents
a simplified outline of the rendezvous architecture.

Figure 3-3. The stream-based rendezvous architecture uses message
streams, represented here by horizontal cylinders. The upper curved
arrow allows the rendezvous server to note request times as they are
received by the proxy and put into the raw stream. The lower curved
arrow shows how the rendezvous server publishes a single response
back to the proxy for each request.

Of course, in real-world situations, there would be many models
being compared and managed at any point, not just the few shown
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in Figure 3-3. These additional models would be managed by addi‐
tional instances of the rendezvous architecture, each isolated to a
single problem. Notice how streams are used for raw data, for input
data, for model scores, and for final results. Containerization of
models with Kubernetes for orchestration is also very straightfor‐
ward with rendezvous further providing non-interference of models
running at the same time. New models can be started at any time
without any reconfiguration or notification because they can begin
reading requests and producing scores at any time. This streaming
microservices architecture makes it possible for your machine learn‐
ing system to respond in a flexible and agile manner, adapting
quickly to changes as appropriate.

A rendezvous architecture helps with training data collection, as
well. Figure 3-4 shows how you can deploy a decoy model (shaded)
into a rendezvous service. This decoy model will receive exactly the
same input data as any other model, but it won’t produce results;
instead, it will archive those inputs (which include request identifi‐
ers) for later correlation against model scores or ground truth infor‐
mation for model training. You might think that archiving input
data is not necessary, but a perennial problem in machine learning is
that reconstructed data is often not identical to real data, especially if
it has been collected as a byproduct rather than an intentional and
accurate record.

Figure 3-4. You can add a decoy and a canary model to a rendezvous
architecture. The decoy archives input data for later use in training
and debugging. The canary provides a useful real-time comparison for
baseline behavior of both input data and other models.
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Another handy trick that comes easily with a rendezvous architec‐
ture is a canary model, as depicted in Figure 3-4. The canary is not
intended to provide usable results; the rendezvous service likely is
configured to ignore the canary, in fact. Instead, the canary model is
a model known to have reasonable and very stable performance,
and, as such, it provides a scoring baseline to help you detect shifts
in input data and as a benchmark for other models.

For detecting input shifts, you can compare between the distribution
of outputs for the canary model and recent and older distributions.
Details of how to do this are explained in the Machine Learning
Logistics book, but the basic idea is that model score distribution is a
very useful measure of semantic structure for the incoming data. If
that distribution jumps in a surprising way, we can infer that the
canary has detected a significant change in inputs.

Using the older canary as a benchmark for behavior of new models
might seem surprising. Why not just compare new models to each
other? As it turns out, the canary’s age is a benefit—that’s what
makes it so useful as a benchmark for model performance. Over
time, every new model will have been compared to the canary dur‐
ing the preproduction checkout and warm-up period. The DataOps
team will have developed substantial experience in comparing mod‐
els to the canary and will be better able to spot anomalies quickly.
That can be an advantage over comparing new models to other new
models because none of them will have much of a track record.

Other Systems for Managing Machine Learning
There are a number of systems being developed to help with the
management of the machine learning process. Unfortunately, most
are limited to the learning process itself. Very few are concerned
with the cradle-to-grave life cycle of models. The systems that are
available are under intense development and the selection of sys‐
tems and advantages of each will change rapidly for the next few
years.

Of these systems, the one with the most promise is likely to be Goo‐
gle’s KubeFlow. Intended as a full-cycle management system, it is a
bit rough at the moment, but most of the critical pieces are available,
albeit from the command line and in limited form right now. If
Google can follow up on the success of Kubernetes itself, Kubeflow
is likely to become an overwhelming standard.
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The Clipper system from the University of California Berkeley RISE
lab does not take a comprehensive view of the problem. Instead,
RISE looks at what it takes to deploy models into production and to
serve results with very low latency. One of the interesting things that
Clipper does is to integrate result caching into the framework to
help lower latency.

There are a number of startups working in the area, each with a dif‐
ferent focus. Valohai, for instance, is working on a flexible model as
a service offering. Hydrosphere has, so far, taken a very advanced
look at monitoring of production models. You can expect to hear
from a large number of additional startups in this area, as well.
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CHAPTER 4

Example Data Platform: MapR

You probably didn’t wake up this morning thinking, “I’m gonna get
me a global namespace!” But you likely do want the things it can
make possible for your production systems. What makes this and
other capabilities of a data platform interesting is knowing how they
can help in getting systems into reliable production. This isn’t always
obvious, especially as new technologies offer features that are just
that, new. In this chapter, we describe one example technology: the
MapR data platform. Most of the insights we’ve discussed so far, plus
the design patterns we describe in the next chapter, are based on
watching how people build successful production systems, and this
is the platform they used.

Only a few of the design patterns we describe in Chapter 5 abso‐
lutely require capabilities unique to MapR, but all of them demon‐
strate good practice in pushing platform-appropriate functions
down to the platform rather than trying to implement them at the
application level. That’s an important general lesson regardless of the
platform you use.

Understanding how the MapR data platform works will make it eas‐
ier to see the key ideas in the design patterns. Once you see that,
you’ll understand how to adapt them to your own needs. We also
think you might find this technology interesting in its own right.
Toward that goal, we use the first half of the current chapter to give
you a grounding in some key capabilities of the MapR platform in
the context of production deployments and then go on in the sec‐
ond half of this chapter to describe the underlying technology.
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Fundamental features of the MapR platform—files,
tables, and streams—are all engineered together into a
single technology, part of the same code and able to
run on the same cluster instead of being separate sys‐
tems that work together via connectors.

A First Look at MapR: Access, Global
Namespace, and Multitenancy
One of the key distinctions of MapR’s data platform is that it pro‐
vides a real-time, fully read-write filesystem. This capability means
that you not only can interact with data stored on the cluster via
Spark or Hadoop commands and applications, but you also can
access the exact same data via more traditional methods and legacy
applications. Any program in any language running on Linux or
Windows system can access files in the MapR cluster using standard
file input/output (I/O) mechanisms.

This broad compatibility with the MapR file system (MapR-FS) is
possible primarily because MapR-FS allows access to files via a FUSE
interface or via Network File System (NFS), both supporting a
POSIX API. Additionally, files on a MapR system can also be
accessed via the HDFS API and via the S3 API. This wide variety of
access methods is very different from Hadoop Distributed File Sys‐
tem (HDFS), the file system that Hadoop distributions use for dis‐
tributed data storage, which supports only limited APIs and
semantics. That’s part of the reason for the sense you get of a wall
between data in a Hadoop cluster and whatever non-Hadoop pro‐
cessing or modeling you want to do.

What are the implications of MapR-FS being a read/write file sys‐
tem? One effect is that existing applications—so called legacy code—
can access data (big or small) without needing to be rewritten using
Spark or Hadoop. This interoperability eliminates copy steps and
saves considerable time. Fewer steps helps make success in produc‐
tion more likely.

Another surprising characteristic of MapR-FS is that the file system
is extended to include tables and streams on a par with files. You can
access MapR streams by using the Apache Kafka API, and tables can
be accessed using the Apache HBase API or the OJAI document
database API, but the data is actually stored in the MapR file system,
in the same system that stores file data. We talk in more detail about
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how that works in the second part of this chapter. The big idea is
that having files, tables, and streams as objects in the same file sys‐
tem reduces complexity in infrastructure and architecture and often
requires fewer servers because different services can share the same
cluster. You can also use the same security and same administration
for all three kinds of objects.

Equally surprising is that all of these data structures live in the same
directories and share a global namespace, as you can see in
Figure 4-1. Actually, we have known for decades that being able to
name and organize files was a good thing that makes development
easier and less error prone, so it makes sense that this is good for
tables and streams. Directories and a global namespace simplify data
management for administrators, as well.

Figure 4-1. A screenshot of a user listing the contents of a directory on
a MapR system. This directory contains conventional files, streams,
and a table, as well as other directories. Note that conventional Linux
utilities are used here even though the data is stored on a highly dis‐
tributed system.

With an HDFS cluster, you have directories for organizing files but
no analogous way to organize tables or streams short of proliferating
lots of small special purpose clusters. If you use Apache Kafka for
stream transport you can assign data to topics, but you don’t have
any good way to avoid topic name collision between applications.

You may also have noticed in Figure 4-1 that the path name is divi‐
ded into a cluster name (the /mapr/se1 part) and a volume mount
point part (the /user/tdunning part). MapR-FS has something
called a volume, which is essentially a directory with specialized
management capabilities that enable scalability, disaster recovery,
and multitenancy capabilities. To users and applications, volumes
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appear to be ordinary directories. From an administrator’s point of
view, however, a volume has a number of additional capabilities that
include data locality, snapshots, permissions, and mirrors.

Volumes allow you to position data explicitly within a cluster using
a feature known as data locality. You can use this to prevent perfor‐
mance degradation for particular data sets due to heavy I/O loading
from rogue jobs (i.e., almost anything developers or data scientists
do without proper supervision). You also can use data locality to
ensure that data being consumed by high-performance hardware
such as Graphics Processing Units (GPUs) is close to the GPUs or is
stored on high-performance storage devices such as flash memory.
Regulatory and compliance issues may motivate a need to physically
isolate some data in a cluster onto certain machines without impair‐
ing the ability to use that data.

Volumes also allow exact point-in-time snapshots to be taken man‐
ually or via automated scheduling, a valuable capability to protect
against human error or for data versioning. Entire volumes can be
atomically mirrored to other clusters for testing, development or
disaster recovery purposes. These are additional ways that you can
push many tasks to the platform for automatic execution rather than
being a burden for the application developer.

MapR-FS is also automatically controls and prioritizes I/O loads
caused by system functions such as data mirroring, recovery from
hardware failures or moving data to cold storage. Correct prioritiza‐
tion of such loads is tricky because prioritizing application I/O loads
can actually degrade reliability if lost replicas of data are not re-
created quickly enough. Conversely, prioritizing recovery loads can
interfere with applications unnecessarily. MapR-FS handles this vari‐
able prioritization by controlling I/O loads on an end-to-end basis.

Geo-Distribution and a Global Data Fabric
You can connect MapR clusters together into a single data fabric by
near real-time replication of tables and streams. This means that an
application developer or data scientist can just read or write data in
a stream or table as if it were local, even if it decidedly is not. A pro‐
gram can write data into a stream in one data center and an analyt‐
ics program could read it in another, but each application would not
need to know where the other is. Data could have come from an
instrument in front of you or across the ocean—it feels the same.
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You don’t need to waste time at the application level making sure
bytes move reliably; the platform takes care of this for you.

Figure 4-2 shows a highly simplified diagram of how a data fabric is
built using the multimaster stream and table replication capabilities
of the MapR platform. The figure shows two clusters within the data
fabric. The first has two processes analyzing file, stream, and table
data. The stream and table data from the first cluster are replicated
to a second cluster where another program could analyze the data,
as well.

Figure 4-2. The streams and tables in one MapR cluster can be replica‐
ted to streams and tables in other clusters to form a coherent data fab‐
ric. This replication allows multimaster updates. Either or both clusters
could be in an on-premises data center or hosted in a public cloud.

Data can also be moved between clusters in your data fabric using
volume mirroring, and mirroring to a remote cluster sets you up for
disaster recovery. We describe the details of how mirroring and
stream/table replication work later.

You can connect small footprint MapR clusters to the data fabric
forming an Internet of Things (IoT) edge. This makes it feasible to
collect data from many distributed sources and, if desirable, do pro‐
cessing, aggregation, or data modeling at the edge rather than hav‐
ing to move all data back to a central cluster. Edge Computing is one
of the basic design patterns that we describe in Chapter 5.
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Implications for Streaming
Streaming architecture and streaming microservices require decou‐
pling of data sources and data consumers and thus are based on
stream transport technology in the style of Apache Kafka, which
includes the MapR streams. (See Chapter 2 and Figure 2-7 for an
explanation). Although MapR streams support the open source
Kafka API, they are implemented very differently, and that gives
MapR streams additional capabilities beyond those of Kafka. Both
are useful as connectors between microservices, but MapR’s stream
replication, ability to handle a huge number of topics, and integra‐
tion into the MapR file system set it apart from Kafka. Let’s see how
these capabilities play out for production applications.

For systems based on streaming microservices, MapR streams are
handy because each stream bundles an independent set of topics.
This avoids inadvertent topic name collision between services, a
potential problem with Kafka for which all topics are in a single flat
namespace. The scoping of topic names within MapR streams
makes it practical, for example, to run multiple rendezvous frame‐
works for managing different machine learning systems the same
MapR cluster without interference even if the frameworks use the
same topic names (in their own separate streams).

One of the biggest differences between MapR streams and Kafka is
that MapR streams are built into the file system, and that has many
implications. For one thing, with MapR, adding streams or adding
topics to existing streams (even hundreds of thousands or millions)
does not affect the effort to administer the cluster, but adding a new
Kafka broker cluster does increase the effort required to administer
Kafka. This characteristic of MapR reduces cluster sprawl compared
to Kafka, which has difficulty efficiently handling more than about
1,000 topic partitions per broker in the Kafka cluster. For MapR,
policies such as stream replication, message time-to-live (TTL) and
access control expressions (ACEs) are applied at the stream level for
many topics together. These capabilities are important for design
patterns such as the IoT Data Web and other situations for which
consistent control of data from many sources is desirable. Figure 4-3
illustrates an industrial IoT use case inspired by an oil and gas
exploration company.
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Figure 4-3. In this industrial IoT example, data from sensors on indi‐
vidual pumps are assigned to separate topics bundled together into a
MapR stream, shown as a horizontal cylinder in the diagram. In real‐
ity, there could be thousands of topics handled by the stream or more.
Here, the data for a digital twin is pulled from just one topic, pump-1.
Another consumer, a dashboard, subscribes to topics pump-1 through
pump-4.

The way that MapR streams are embedded in the MapR file system
also means that pieces of topic partitions are distributed across the
cluster. With Kafka, partition replicas are restricted to a single
machine. That limitation makes a practical difference. With MapR
streams it is reasonable to set the TTL to months, years, or even for‐
ever, thus providing a long-term, replayable, event-by-event history.
This playback capability is needed for use cases that employ the
design pattern we call Streaming System of Record. We mentioned
this approach in the use cases described in Figure 2-6, where a mes‐
sage stream with a long TTL might serve as the system of record for
security analytics.

Keep in mind that MapR streams being a first-class part of the file
system means that you don’t need a separate cluster just for stream
transport as you do with Kafka. Every stream in a MapR cluster is the
equivalent of an entire cluster of Kafka brokers. You can have as many
streams on a MapR cluster as you like, each containing hundreds of
thousands of topics or more. The more familiar a person is with
Kafka, the harder it can be for them to realize that with MapR you
don’t need a separate cluster for stream transport; you stream mes‐
sages on the same cluster where your Flink, Spark, or other applica‐
tions are hosted. This reduces operational complexity by avoiding a
network bottleneck. This difference was highlighted in a discussion
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about benchmarking Apache Flink on MapR streams that appeared
in the book Introduction to Apache Flink by Friedman and Tzoumas
(O’Reilly, 2016; see Chapter 5).

A final implication of MapR streams being built in to the MapR file
system is the role of the data platform working in conjunction with
Kubernetes orchestration of containerized applications. Using the
same platform across your entire data fabric, you can persist state
from containerized applications in any form you like: as streams,
files, or tables. This capability avoids the need for a swarm of con‐
tainerized Kafka clusters, separate file stores, HDFS clusters, and
databases.

Now you’ve seen how you can put to use some of the key capabilities
of the MapR platform. In the rest of this chapter, we give an over‐
view of the technology underlying these capabilities to show you
how it works.

How This Works: Core MapR Technology
Internally, all data in MapR-FS is stored in database-like structures
called B-trees that coordinate the storage of data arranged as 8-kiB
blocks. Each tree lives on only a single machine, but each one can
reference other trees on other machines. By choosing the key and
the data in these trees, it’s possible to implement an entire file system
complete with directories and files. A tree can be a directory if the
keys in the tree are file names and the values are references to files.
These files are also trees whose keys are offsets and values are refer‐
ences to chunks. Each chunk is a tree with offsets for keys, and val‐
ues are references to actual pages of storage.

These trees can also emulate other interesting kinds of data storage.
A tree can become a document database where keys are database
keys, and values are encoded rows. Or they can implement a mes‐
sage queue where keys are combinations of topic and message offset.

This technical generality is what allows MapR-FS to contain directo‐
ries, files, streams, and tables. All of these objects share their under‐
lying implementation in terms of trees. There are a few additional
objects that help manage the distributed data, but the core principle
is the representation of everything in terms of these primitive
B-trees.
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Comparison with Hadoop
Some people equate big data with Hadoop, but the needs of big data
have migrated significantly over the past few years. Practically
speaking, the MapR data platform has several differences relative to
Hadoop-based storage using HDFS that change the scope for appli‐
cations that run on MapR.

These differences include:

• HDFS has one or more special servers known as name nodes
that hold all metadata for a cluster. Most commonly, a single
name node is used, possibly with a backup (we talk about how
name nodes can be federated later). The problem is that this
name node is a bottleneck, a scalability limit, and a substantial
reliability risk. Name node failure can (and we have heard of
cases where it did) result in substantial data loss. In contrast,
MapR has no name node; metadata is distributed across the
cluster for higher reliability, higher performance, and less
chance of bottlenecks.

• MapR-FS supports real-time updates to files, tables, and
streams. In contrast, real-time use of HDFS is difficult or
impractical. This limitation in HDFS comes about because
every write to a file extends the length of the file when the write
is committed. This requires a round-trip transaction to the
name node, so programs try to commit writes only rarely. In
fact, it is common for multiple blocks composed of hundreds of
megabytes of data to be flushed all at once.

• HDFS supports only a write-once, read-many model in which
files cannot be updated except by appending new data to the
end, as soon as the file has been written.

• Files, tables, and streams in the MapR platform have full multi‐
reader/multiwriter semantics. HDFS allows only single-writer
or multiple readers, which means that readers cannot read files
while a writer still has them open for writing. This makes real-
time processing nearly impossible.

• The content of files stored in MapR can be written in any order.
This is required for many legacy systems. HDFS can’t do out-of-
order writes. Network protocols like NFS often result in out of
order writes, as do databases such as Postgres, MySQL, or
Sybase.
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• The number of objects in a single MapR-FS cluster is practically
unlimited; billions or trillions of files are viable. This makes the
MapR data platform usable for many object storage applica‐
tions, as mentioned in the design pattern called Object Store.
With HDFS, the name node has to keep track of all of the blocks
in all of the files in memory. That severely limits the number of
blocks (and thus files) to a level several orders of magnitude too
small for many applications.

• Recent support for name node federation in HDFS does not
change scalability limits in HDFS significantly because scaling
with federation increases the level of manual administrative
effort super linearly. The federation structure is also visible in
the file system names, which causes the structure to leak into
service implementations. These issues mean that federation
increases scalability by only a small factor at best; supporting 10
billion files would require several hundred primary and backup
name nodes.

The simplistic design of HDFS made it much easier to implement
originally, but it also made it much harder to work with, except with
programs specially designed to accommodate its limitations. Spark
and Hadoop MapReduce are two examples of programming frame‐
works that support this, but almost all conventional databases, for
example, cannot run on HDFS even in principle.

Of course, the limitations of HDFS were well understood from the
beginning. The design was a reasonable one for the limited original
use case. The problem really comes with attempts to use HDFS for
different kinds of workloads or where the limits on file count or
metadata update rates are important.

Beyond Files: Tables, Streams, Audits, and
Object Tiering
As mentioned earlier, MapR-FS supports a number of capabilities
not normally found in file systems, distributed or not. These capa‐
bilities allow a wide range of applications to be built on a single clus‐
ter without needing additional clusters for databases or message
streams. These capabilities also allow you to connect multiple clus‐
ters together to form a data fabric.
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MapR DB Tables
One such extended capability is the ability to store tables in directo‐
ries anywhere that you can store a file. These tables are accessible
using table operations analogously to the way that a file is accessible
using file operations. Looked at one way, tables in MapR-FS are an
extension of a file system beyond what you can do with files alone,
but from a different point of view, these tables could be seen as an
extension to the idea of databases to allow tables to live in directo‐
ries, allowing them to have path names and permissions just like
files. Regardless of the perspective you choose, you can access tables
in MapR-FS using either the Apache HBase API or using the OJAI
API, an open source document-oriented table interface that sup‐
ports nested data formats such as JSON. The HBase API provides
binary access to keys and values, whereas the document-oriented
OJAI is more in the style of Mongo and is generally preferred for
new applications because of the built-in nested data structure.

Records in MapR tables are associated with a key and are kept in
order according to the key. Each table is split into tablets with each
tablet containing data corresponding to a particular range of keys.
Each tablet is further divided into smaller units called segments that
actually do the real work. As data is inserted, these tablets can grow
larger than a configurable size. When this is detected, tablets are
split by copying segments to a new copy of the tablet. An effort is
made to avoid network traffic during this copy but still leave the
new tablets on different machines in the cluster. The underlying
implementation for MapR tables inherently avoids long delays due
to compactions. The result of this and other technical characteristics
is much better availability and reliability than Apache HBase, espe‐
cially under heavy load. You can find an example of the practical
impact in the Aadhaar project mentioned in Chapter 1, where the
system meets strict latency guarantees.

Tables in MapR can have records describing all changes to be writ‐
ten to a message stream using a changed data capture (CDC) fea‐
ture. Because message streams in MapR-FS are well ordered, you
can use this data to reconstruct a table, possibly in another technol‐
ogy (such as a search engine) or in masked or aggregated form. The
use of CDC is described in Chapter 5 in the Table Transformation
and Percolation design pattern.
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You also can configure tables so that all changes are replicated to a
remote copy of the table. Table replication is near real time and can
use multiple network connections to allow very high replication
rates. Within any single cluster, updates to tables are strongly consis‐
tent, but replication is bidirectional and subject to delay on network
partition with conflicting updates on rows resolved using time‐
stamps.

To support multimaster updates, it is common to devote individual
columns or document elements to individual source clusters. You
could use this, for example, to support multimaster increments of
counters by having a single counter column per cluster in the data
fabric. Reading a row gives an atomic view of the most recent value
for the counters for each cluster. Adding these together gives a good,
if slightly out-of-date, estimate of the total count for all clusters.
Local strong consistency means that the column increments will be
safe, and because each column comes from only a single cluster, rep‐
lication is safe. Similar techniques are easily implemented for a vari‐
ety of similar tasks such as IoT reporting.

Message Streams
In MapR-FS, message streams are first-class objects, as are files and
tables. You can write to and read from message streams using the
Apache Kafka API, although the implementation of message streams
in MapR-FS shares no code with Kafka itself.

Each stream logically contains of a number of topics, themselves
divided, Kafka-style, into partitions. Messages within partitions are
ordered. Topics in different streams are, however, completely inde‐
pendent. This allows two instances of the same application to run
independently using different streams, even though they might use
the same topic names. To achieve the same level of isolation while
avoiding the risk of topic name collision, two Kafka-based applica‐
tions would have to use separate Kafka clusters.

Physically, MapR streams are implemented on top of the primitive
B-tree structures in MapR by using a combination of topic, parti‐
tion, and message offset as the key for a batch of messages. The
batching of messages allows very high write and read throughput,
whereas the unification of the entire stream in a single distributed
data structure means that the same low-level mechanisms for dis‐
tributing table and file operations can be repurposed for streams.
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This allows, for instance, all permission, security, encryption, and
disaster recovery mechanisms to apply to streams with no special
code required to make it so.

The MapR platform itself uses streams internally for a variety of
purposes. The table CDC function uses streams to carry table
updates. The audit system delivers audit messages using streams.
System metrics that record operational volumes and latency sum‐
maries are also carried in streams.

You can replicate streams to remote clusters in a similar fashion as
tables. The pattern of replication can be bidirectional, many-to-one,
or even have loops. For consistency, you should write each topic in a
set of stream replicants in only one cluster. Message offsets are pre‐
served across all stream replicas so that messages can be read from
different clusters interchangeably once they have arrived.

Auditing
In earlier chapters, we talked about the importance of having fine-
grained control over data and applications and that requires know‐
ing what is going on. Transparency into your systems helps with this
in situations such as finding bottlenecks such as described at the end
of Chapter 2.

With MapR, it is possible to turn on selective levels of audit infor‐
mation for any volumes in a system. With auditing enabled, infor‐
mation about object creation, deletion, update, or reads can be sent
to a message stream in an easily parsed JSON format.

You can use audit information in a variety of ways, the most obvious
being monitoring of data creation and access. This is very useful
when combined with automated anomaly detection in which a pre‐
dictive model examines access and creation of data for plausibility
against historical patterns.

You can use audit information in other ways. For instance, by moni‐
toring audit streams, a metadata extraction program can be notified
about new files that must be analyzed or modified files whose meta‐
data needs updating. You could imagine the creation of thumbnails
for videos being triggered this way or the extraction of plain texts
from PDF documents. Audit streams are also excellent ways to trig‐
ger indexing of files for search purposes.
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Object Tiering
By default, all of the data in a MapR cluster is triplicated to provide
resiliency against hardware failure and maximal performance. Rep‐
lication applies to file, table, and stream data, as well as directory
and volume metadata. It is common, however, that data is used
intensively right after it is created, but usage drops off after that.
Data that is rarely accessed may still need to be retained for a long
time, however, possibly decades. Triplicating data in such cases gives
no performance advantage but still costs space. It is important to
differentially optimize how data is stored for speed, space, or cost.

Such quiescent data can be converted from triplicated form to a
form known as erasure coding that takes up less than half the space
but which has as good or better ability to survive multiple hardware
failures. Conversion is controlled by administrative policies based
on age and rate of access to data. As properties of volumes, these
policies can vary from volume to volume.

Eventually, it may become desirable to absolutely minimize the cost
of storing data to the point that speed of access to the data becomes
an almost irrelevant consideration. In such cases, you can copy
objects to a very low-cost object store such as Amazon Web Services’
Simple Storage Service (Amazon S3) or the Microsoft Azure object
store.

In any case, the data will still be accessible using the same path name
and same operations as ever, no matter how data is stored. Data can
also be recalled to the speed tier at any time if it becomes important
to optimize performance again. By preserving the metadata and
providing uniform access methods, MapR clusters even allow
updates to files, tables, and streams that have been copied to immut‐
able storage like Amazon S3.
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CHAPTER 5

Design Patterns

Now that you have a good grounding in the habits that are charac‐
teristic of successful large-scale production deployments and an
understanding of some of the capabilities to look for in data plat‐
form and containerization technologies with which you build your
systems, it’s useful to see how that comes to life in real-world situa‐
tions. In this chapter, we present a collection of design patterns you
can use across a wide range of use cases. These patterns are not
industry specific and may be combined in a variety of ways to
address particular business goals. Most important, these design pat‐
terns are not theoretical. We base them on what we see customers
doing in successful large-scale production systems.

Your challenge is to figure out how you can put these powerful
underlying patterns to use in your own situation. As you read this
chapter, you may find it useful to skim the first paragraph of each
design pattern to find those that relate to your needs.

Internet of Things Data Web
More and more businesses are building elements of intelligence,
control, and reporting into physical products. These products can be
cars, medical devices, shipping containers, or even kitchen applian‐
ces. As they build these features into their products, these businesses
all have a common problem of moving data from these products to a
central facility and pushing software updates back to the devices.
Doing this requires secure transport of data between the things in
the field back and an analytics system. One commonly requested
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feature of such a system is to build what is known as a digital shadow
of each thing for informational purposes or diagnostics. Other goals
include computing aggregate statistics of product feature usage and
distribution of product updates.

The most important constraints in this design pattern are data secu‐
rity, scale and reliability in a difficult and nearly uncontrolled work‐
ing environment.

Figure 5-1 shows a basic design that is common for this pattern. The
process starts at the device, of which there might be hundreds—or
hundreds of millions. Each device records status and sensor data for
central analysis but also needs to get software and configuration
updates. These updates may be targeted to one particular device or
class of devices. It is almost universal that the data produced by the
device must be kept private and that device data and software
updates must be unforgeable.
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Figure 5-1. In the Internet of Things Data Web design pattern, data
flows to and from devices across a link (1) secured by standard public-
key cryptographic protocols. Both device and gateway identity are
secured by certificates. Updates (2) to configuration and firmware can
be sent to devices via this link. Data from devices is forwarded (3) to a
comprehensive log for all devices so that it can be rendered into an
overall dashboard. This same data is sent to a stream (4) where the
topic is the device ID. This allows per device histories known as device
shadows to be maintained by direct access to the by_device stream and
without a database.

Locking Down the Data Link
Referring to Figure 5-1, step 1 is the data link between the device
and a gateway. This first link must satisfy some key security require‐
ments. To ensure security, each device has a unique digital certificate
that is signed by a special signing authority controlled by the manu‐
facturer of the device. When the device connects to a data gateway,
this certificate is used to authenticate that the device is genuine, and
a similar certificate for the gateway is used to validate that the gate‐
way is genuine. These certificates are both signed by the manufac‐
turer so that the device and the gateway can use those signatures to
verify each other’s authenticity. All data transferred on the link
between the device and the gateway is also encrypted using standard
protocols such as Transport Layer Security (TLS).
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It is important that this link be implemented using a very widely
used and standard protocol such as TLS in order to capitalize on the
vast experience in defending the protocol against attackers. Using
TLS with device and gateway certificates makes it difficult or impos‐
sible for attackers to create fake devices, to forge data from an exist‐
ing device without invasive access to the device itself, or to forge
software updates for devices. One key point with the TLS security is
to strictly limit the list of signing authorities that are accepted for
the certificates for the gateway and devices. The normally expansive
list of signing authorities included in web browsers is inappropriate.

Just as there can be many devices, there can be multiple gateways to
allow sufficient scale for the number of devices or to allow operation
in multiple geographical regions. Typically, devices will connect to
gateways using mobile networks, but if internet access is available
directly, alternate channels can be used.

Messages that are downloaded from the gateway to the device can be
addressed to the device by having multiple topics in the updates
stream (item 2 in Figure 5-1). There can be one topic for all devices,
a topic for each class of devices, and even a topic for each individual
device. Each device will subscribe to all of the streams that might
apply to it. Critical messages such as software updates should be
independently cryptographically signed to prevent malware injec‐
tion, even if the message stream security is compromised.

Device identity information must be sufficiently detailed to allow
security constraints to be applied at the gateway. This identity infor‐
mation should be embedded in the device certificate to prevent
device forgery. Some device information, on the other hand, is vari‐
able and should be outside the certificate but still included in mes‐
sages sent from the device. Data coming from the device should be
packaged by the gateway together with the device identity so any
downstream consumers can unambiguously identify the device
associated with each message. Stream permissions should be used so
that only valid gateway processes can send device messages. This
helps guarantee that all device messages are well formed and include
all pertinent identity information. In Figure 5-1, such messages are
in the log_events stream.
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Dashboards For All or For Each
At the point labeled 3 in Figure 5-1, device messages can be aggrega‐
ted for dashboards. Such dashboards are very handy for verifying
overall system function, especially if device anomaly detection is
used to highlight unusual behavior in the population of devices.

If you have a streaming system that can handle a large number of
topics, it is a nice step to copy the events to a stream where the topic
is equal to the device ID. This corresponds to item 4 in Figure 5-1
and allows you to have a real-time look at any single device very
easily with no database overheads. If you are using a system that
doesn’t like high topic diversity, such as Apache Kafka, you will
likely need to use a database for this, but this can be problematic if
you have high update rates. Even if each device sends a message only
rarely, the total rate can be pretty high. For instance, 100 million
devices sending one message every 100 seconds results in a million
messages per second. That is pretty easily handled by a well-
partitioned streaming system, but it can be a bit more strenuous to
handle that kind of update rate with a database. It isn’t impossible,
but you need to budget for it. Of course, if you have 1,000 devices
reporting once per hour, the update rate isn’t a big deal, and any
technology will work.

The key steps in getting an IoT system of this kind into production
is building out the gateway and first streaming layer. Getting secu‐
rity built in to the system correctly from the beginning is critical
because almost everything else can be layered in after you are up
and running.

Data Warehouse Optimization
One of the most straightforward ways to start with a big data system
is to use it to optimize your use of a costly data warehouse. The goal
of data warehouse optimization is to make the best use of your data
warehouse (or relational database) resources in order to lower costs
and keep your data warehouse working efficiently as your data
scales up. One way to do this that offers a big payback is to move
early Extract, Transform, and Load (ETL) processing and staging
tables off of the data warehouse onto a cluster running Apache
Spark or Apache Drill for processing. This approach is advantageous
because these ETL steps often consume the majority of the process‐
ing power of the data warehouse, but they constitute only a much
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smaller fraction of the total lines of code. Moreover, the staging
tables that are inputs to these ETL steps are typically much larger
than subsequent tables, so moving these tables to an external cluster
can result in substantial space savings. You gain an advantage by
relieving strain on the data warehouse at your current data volumes,
plus you’ll have set up a highly scalable system that will continue to
work in a cost-effective way even as data volumes grow enormously.
It makes sense to move each part of the process to the platform on
which it works most efficiently. Often, initial data ingestion and ETL
makes sense on Spark or Drill, whereas it may make sense to keep
critical-path traditional processes on the data warehouse as before.

Figure 5-2 shows the evolution of a data warehouse system as data
warehouse optimization proceeds. Initially, in the top panel, we see
the traditional view of the process. Data is ingested by copying it
into a networked storage system. This data is then imported into the
staging tables on the actual data warehouse, and important data is
extracted and transformed before loading (ETL) and final process‐
ing. This use of staging tables is broadly like what we have seen in
actual customer installations. Significantly, the majority of computa‐
tional resources are typically consumed in the ETL processing, but
only a small minority of the code complexity is in this phase.

Data warehouse optimization works by moving staging tables and
ETL processing to an external cluster, as shown in panels B and C.
This change eliminates the need for a storage system to facilitate the
transfer and removes considerable processing and storage load from
the data warehouse.

You can change this process by using a data platform to optimize the
system, as shown in the bottom two panels of Figure 5-2. In the
middle panel of the figure, we see how this optimization works
using a MapR cluster. Here, data is copied from the original source
to a network-mounted file system exactly as before, but now the
storage system has been replaced by a MapR cluster that holds the
staging tables. All or some of the ETL process is run on the MapR
cluster instead of the data warehouse, and then the work product of
the ETL process is bulk loaded into the data warehouse using stan‐
dard bulk import tools via another networked mount of the MapR
cluster.
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Figure 5-2. The evolution of a data warehouse system.

The lower panel of Figure 5-2 shows an alternative design for a non-
MapR platforms. The goal is the same, but there are some variations
in how the data is ingested for ETL and how the refined data is

Data Warehouse Optimization | 85



exported to the data warehouse. The biggest difference is the use of
specialized connectors to work around the lack of high-performance
NFS access to the Hadoop Distributed Files System (HDFS) cluster.

Exactly how much of the ETL process is moved to the cluster
depends on the exact trade-off of code size, performance, and natu‐
ral modularity in the code on the data warehouse. Typically, true
extract and transform code runs much more efficiently on a cluster
than a data warehouse, while advanced reporting code may well run
faster on the data warehouse. These speed trade-offs must be meas‐
ured empirically by converting sample queries, and the benefits of
conversion then need to be balanced against fixed conversion costs
and the variable savings of running the process on the external clus‐
ter. The final reporting code on the data warehouse is often large
enough, complex enough, and difficult enough to test that the trade-
off is clearly on the side of leaving it in place, at least initially.

When data warehouse optimization is done with some kind of
Hadoop cluster, special-purpose connectors are required, as shown
in the bottom panel (c) of Figure 5-2. This increases the complexity
of the overall solution and thus increases the management burden
and decreases reliability. With the MapR data platform (b), the need
for connectors is avoided by using standard bulk export and bulk
import utilities on the data source and data warehouse systems
respectively together with direct access to the MapR cluster using
standard file API’s.

The savings in using an external cluster for data warehouse optimi‐
zation come from the displacement of the external storage and the
substantial decrease in table space and ETL processing required on
the data warehouse. This is offset slightly by the cost of the external
cluster, but the net result is usually a substantial savings. In some
cases, these savings are realized by the need for a smaller data ware‐
house, in others by a delay in having to upgrade or expand an exist‐
ing data warehouse. In addition to a cost advantage, this style of
cluster-based data warehouse optimization keeps all parts of the
process running efficiently as your system grows. The move to an
external cluster therefore future-proofs your architecture.

Extending to a Data Hub
A significant fraction of MapR customers name the centralization of
data—sometimes called a data hub or data lake—as one of the most
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important early use cases. More and more, however, they are look‐
ing beyond the data hub to building a data fabric. The term “data
hub” is very loosely defined, but the centralization concept is fairly
simple and very powerful: by bringing together data from a variety
of sources and data types (structured, unstructured, or semi-
structured, including nested data) into a centralized storage accessi‐
ble by many different groups for various types of analysis or export
to other systems, you widen the possibilities for what insights you
can harvest.

The concept of an enterprise data hub was one of the most com‐
monly cited use cases for Hadoop clusters a few years ago. This rep‐
resented the fact that Hadoop clusters were becoming less
specialized and more of a company-wide resource. There were com‐
monly difficulties, however, in allowing multitenancy because differ‐
ent applications had a tendency to interfere with one another. It was
intended that the centralization of data would help break down
unwanted data silos. Some forms of analysis, including some valua‐
ble approaches to machine learning, are greatly improved by being
able to combine insights from more than one data source.

The data hub is a natural evolution from the data warehouse optimi‐
zation use case, as well. Because the early stages of ETL bring in and
save raw data, that same data can be accessed for other purposes,
which can lead organically to the construction of a data hub. The
relatively low cost of large-scale storage on big data systems relative
to dedicated storage devices makes this particularly attractive. In
Chapter 6, “Tip #2: Shift Your Thinking” refers to the benefit of
delaying some decisions about how you want to process and use
data. The data hub fits that idea by building a central source in
which data can be used in a variety of ways for many different inter‐
nal customers, some currently of interest, others to be discovered in
the future, as depicted in Figure 5-3.
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Figure 5-3. A data hub centralizes data from many sources and pro‐
vides access to many users such as different groups of developers, data
scientists, and business analysts. Here the reference database would be
NoSQL HBase or MapR-DB. Having easy access to widely varied data
makes new ideas and applications inevitable.

A data hub can also support development of a Customer 360 data‐
base, as described in the next section, along with ETL for data ware‐
house optimization, analysis of log data, processing of streaming
data to be visualized on a dashboard, complex anomaly detection,
other machine learning projects, and more. The common theme is
that these clusters have a lot going on on them in all kinds of ways.

At this point, however, a data hub per se is often difficult to bring
into production unless you have very specific use cases to deliver. In
addition, the early view that Hadoop was the best way to build a data
hub has changed somewhat with the emergence of tools like Apache
Spark and the increasing need to be able to have a big data system
that can integrate direct support for business action (operational
data) and the ability to analyze that action (analytics). To do that,
you need to have persistent data structures that can support low-
latency operation. Streams and tables are often the preferred choice
for this.
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Stream-Based Global Log Processing
Stream-based global log processing is probably the simplest example
of a full-fledged data fabric. Large computing systems are composed
of processes that transform data (as in ETL processes) or respond to
queries (as with databases or web servers), but all of these programs
typically record the actions they take or the anomalous conditions
they encounter as so-called log events, which are stored in log files.
There’s a wealth of insights to be drawn from log file data, but up
until recently, much of it has been overlooked and discarded. You
can use logs to trigger alerts, monitor the current state of your
machines, or to diagnose a problem shortly after it happens, but tra‐
ditionally, the data has not been saved for more than a short period
of time. Common uses of log data include security log analytics for
analyzing network and computer intrusions, audience metrics and
prediction, and the development of fraud prevention measures.

These log events often record a huge range of observations, such as
records of performance or breakage. These records can capture the
footprints of intruders or provide a detailed view of a customer’s
online behavior. Yet when system diagrams are drawn, these logs are
rarely shown. In fact, some people refer to log files as “data exhaust”
as though they are just expendable and unwanted pollution. Tradi‐
tionally, logs were deleted shortly after being recorded, but even if
retained, they were difficult to process due to their size. In addition,
logs are produced on or near the machines that are doing the pro‐
cessing, making it hard to find all the log files that might need pro‐
cessing.

All that is changing. Modern data systems make it possible to store
and process log data because it allows cheap and scalable data stor‐
age and the ability to process large amounts of data and message
streams make it easy to bring back to a central point for analysis.

Traditionally, log processing has been done by arranging an intricate
dance between the producers of these logs and the programs that
analyze the logs. On the producer side, the tradition has been to
“roll” the logs by closing one log file when it reaches an age or size
constraint and then start writing to another. As log files are closed,
they become available for transport to the analysis program. On the
receiving side, this dance was mirrored by methods for signaling
exactly which files were to be processed and when programs were to
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run. Moreover, the output of one process typically was input to
another, so this signaling dance cascaded.

This sort of processing can work well enough when all is well, but
havoc reigns when something breaks or even when something is
substantially delayed. Questions about whether old results had to be
recomputed and which programs needed to be run late or run again
were very difficult to answer.

More recently, a new pattern has emerged in which log processing is
unified around a message-streaming system. The use of a message-
streaming style dramatically simplifies the issues of what to do when
and how to redo work that is affected by late-arriving data or system
failures. This new pattern of processing has proven dramatically bet‐
ter than the old file-shipping style of log analysis.

Figure 5-4 shows the first step in stream-based global log process‐
ing. Here, we show web servers as the software generating logs, but
it could as well be any kind of data that produces log files. As log
messages are appended to any log file on any machine in the data
center, that message is written to a message stream that is on a small
cluster. The log messages could be written directly to the log stream
instead of to files, but writing the log messages to a local file first
minimizes the chance of the write to the stream hanging up the pro‐
cessing.
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Figure 5-4. Multiple processes in the same data center can send logged
events to a log stream on a consolidator machine. These processes are
shown as web servers, but they could be any kind of machine or pro‐
cess that produces measurements or event logs. Similarly, we show
these processes and the consolidator as if they are in an on premises
data center, but they could as easily be in a single group of machines in
a cloud such as Amazon Web Services (AWS) or Google Cloud Plat‐
form.

The topics used to write these messages to the log stream are com‐
monly composed using a combination of the data center name, the
name of the node running the application generating the log mes‐
sage, and possibly a message type. Message types are commonly
used to distinguish different kinds of log lines or to differentiate
between different kinds of measurements that might be contained in
the log lines.

So far, there is little advantage in writing log messages to a stream.
There are clear differences, however, because message streams can
be easily replicated to a central data center with minimal configura‐
tion or setup, as shown in Figure 5-5.
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Figure 5-5. You can replicate the log event streams from Figure 5-4
back to a central stream for analysis. With some data platforms, such
replication is built in. For other streaming technologies, such as Apache
Kafka, the replication has to be implemented. In any case, having non-
overlapping topics at the source allows all of the data to funnel into a
single stream.

Exactly how the replication of the stream to the central cluster is
done varies depending on what kind of software you use to imple‐
ment the stream. If you use Apache Kafka, you can configure an
application called Mirror Maker to copy messages from one broker
cluster to another. If you use MapR as a data platform for the
streams, you can instead use the native stream replication that func‐
tions at the data-platform level itself.

In any case, the central data center (labeled GHQ in Figure 5-5) will
have a stream whose contents are the union of all of the messages
from any of many processes running in any of many data centers.
You can process these messages to aggregate or elaborate them as
shown in Figure 5-5. You also can monitor them to detect anomalies
or patterns that might indicate some sort of failure.

The important point in this pattern is not just that log messages
from all of the processes in all of the data centers can be processed
centrally. Instead, it is that you can accomplish the transport of mes‐
sages to the central point with a very small amount of application
code because it is done at using core capabilities of the data platform
itself. The result is substantially simpler and more reliable than
using systems like Flume because message streams as a data con‐
struct provides a more opaque data abstraction.
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Edge Computing
Gathering data from multiple locations and then processing it cen‐
trally, as with the previous design, Stream-Based Log Processing, is
well and good, but there are times when you actually need to do
something out at the edge with the data you are collecting. That
locality of computation might be preferable for a number of reasons,
possibly because you need very low latency, because your system has
to keep working even if the network fails, or just because the total
amount of raw information is larger than you really want to trans‐
mit back to headquarters. The type of computation can vary in com‐
plexity from simple processing or aggregation to running full-scale
machine learning models.

This sort of system has proven useful in connecting drilling equip‐
ment, large medical instruments, and telecommunications equip‐
ment. In each of the cases we have seen, machine learning models,
control software, or diagnostics software runs at each of many field
locations on very small clusters of one to five small computers. Data
moves back to one or more central systems using file mirroring or
stream replication where the data is analyzed to produce operational
reports as well as new models for the edge clusters. These new mod‐
els are then transported back down to the edge clusters so that these
new and improved models can be used in the field.

Even without machine learning, you can use edge computing to
decrease the amount of data retained. This is commonly done by
using a relatively simple anomaly detector on the data so that data
that is predictable and, well, boring can be discarded while data that
is unpredictable or unexpected is retained and transmitted to the
central systems for analysis. This is useful in telecommunications
systems for which the total amount of diagnostic data acquired is
simply too large to return. It is also commonly done as a form of
data compression for process control systems, as well.

As an example, in autonomous car development efforts, the raw data
stream can be 2 GB/s or more. The advanced machine learning
models that are used to understand the environment and control the
car can be used to select data segments that are interesting or novel
from the standpoint of the control system thus decreasing the total
amount of data by roughly a factor of 1,000 without impairing the
quality of the model training process.
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Figure 5-6 shows an outline of the common structure of all of these
systems.

Figure 5-6. Examples of edge computing. In data center 1, models are
used to control data sources d1, d2, and d3. The data produced by
these data sources is processed locally by control models but is also
send to a galactic headquarters (GHQ) cluster to be used to train new
models. In data center 2, on the other hand, data from sources d4, d5,
and d6 are processed by an anomaly detector and only an interesting
subset of the raw data is transported back to the GHQ.

Here, both strategies of edge computing, model execution, and
anomaly detection are shown in a single figure. Most systems would
not use a mixture of strategies; we show both here simply for illus‐
tration purposes.

Customer 360
The goal of a Customer 360 pattern is to establish a high-
performance, consolidated store of complete histories for every cus‐
tomer. When this is done and the entire history for a single
customer is viewed as a single consistent list of events, many kinds
of processing become enormously simpler. The basic idea is that the
nonrelational, highly flexible nature of state-of-the-art big data
allows dramatically simpler interpretation of the data without hav‐
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ing to join hundreds of tables from incompatible snowflake schemas
together.

Having a coherent Customer 360 database makes many analytical
tasks much easier. For example, extracting predictive features for
event prediction is relatively simple to frame as a computation on
the complete history of a single customer. You just need to iterate
through a customer’s history twice: once to find the events that you
want to predict, and once to find out what transactions preceded the
event and thus might be predictive. You can also do a variety of ad
hoc behavioral queries very easily if you can access all of a custom‐
er’s history at once. For instance, a mobile operator might know that
several cell towers were misbehaving during a certain period of
time. With a complete history of each handset, it is possible to find
all customers who had dropped calls near the problematic towers at
the right time. Reaching out to these customers, possibly with some
sort of compensation, could help with potential attrition by showing
that you care about the service that they are getting. Both of these
examples would likely be too difficult to do relative to the expected
value if you have to access a number of databases.

The idealized view of one data store to rule them all often gives way
a bit to a structure more like the one shown in Figure 5-7. Here, as
in the idealized view, many data sources are concentrated into a cen‐
tral store. These streams are accumulated in a reference database
that is keyed by a common customer identifier. The records in these
streams are nearly or fully denormalized so that they can cross from
one machine to another, maintaining their internal consistency and
integrity.
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Figure 5-7. In a Customer 360 system, all kinds of information for a
single customer are collected into a reference database and kept in a
way so that customer histories can be accessed very quickly and with
comprehensive retrieval of all desired data. In practice, internal cus‐
tomers of the data have specialized enough needs that it pays to extract
views of the reference database into smaller, special-purpose subdata‐
bases.

This reference database is stored in a NoSQL database such as
HBase or MapR-DB. The key advantage that these databases offer
for an application like this is that good key design will allow all of
the records for any single customer to be stored nearly contiguously
on disk. This means that a single customer’s data can be read very
quickly—so fast, indeed, that the inherent expansion in the data
caused by denormalization can often be more than compensated by
the speed advantage of contiguous reads. In addition, a modern
document database can store data whose schema is not known
ahead of time. When you are merging data from a number of sour‐
ces, it helps if you can take data verbatim rather than changing the
schema of your reference database every time one of your upstream
sources changes.

When building a Customer 360 database like this, it is likely that you
will quickly find that your internal customers of this data will need
specialized access to the data. For instance, one common require‐
ment is to be able to search for patterns in the customer histories
using a search engine. Search engines like ElasticSearch fill the
requirement for search, but they are not generally suitable for use as
a primary data store. The easy middle ground is to replicate a fil‐
tered extract of the updates to the main database to the search
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engine in near real time. You can easily implement this near real-
time replication using a Change Data Capture (CDC) pattern, as
described later in this chapter.

Another important consumer of Customer 360 data might be a team
of machine learning experts building a predictive model. These
teams typically prefer no database at all; instead, they prefer to get
data in flat files. A common way to deal with this requirement is to
run periodic extracts from the main database to get the record set
that the team needs into a flat file and then, at least on a MapR sys‐
tem, to use filesystem mirroring to deploy the file or files to the clus‐
ter that the machine learning team is using. This method isolates the
unpredictable machine load of the machine learning software from
the production environment for the reference database. Alternately,
programs like rsync can incrementally copy data from the master
machine to the machine learning environment thus moving much
less data than a full copy.

Transactionally correct mirroring is not available on HDFS, how‐
ever, so a workaround is required on Hadoop systems to allow this
type of data delivery. The typical approach used on non-MapR sys‐
tems is to invoke a MapReduce program called distcp to copy the
files to the development cluster. Careful management is required to
avoid changing the files and directories being copied during the
copy, but this alternative approach can make the Customer 360 use
case work well on Hadoop systems.

Another common reason for custom extracts is to comply with
security standards. The reference database typically contains sensi‐
tive information, possibly in encrypted or masked form. Permission
schemes on columns in the reference database are used to enforce
role-based limitations on who can access data in the database. Dif‐
ferent versions of sensitive information are likely stored in different
columns to give flexibility in terms of what data people can see. To
secure the sensitive information in the reference database even more
stringently, it is common to produce special versions of the refer‐
ence database with all sensitive data masked or even omitted. Such
an extract can be manipulated much more freely than the original
and can be hosted on machines with lower security profiles, making
management and access easier. Security-cleared extracts like this
may be more useful even than the original data for many applica‐
tions.
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Recommendation Engine
The motivation for building a recommendation engine generally is to
improve customer experience by better understanding what will
appeal to particular customers. This is done by an analysis of the
customers’ preferences communicated through their actions. The
improved experience can result in increased sales, longer retention
for services, stickier websites, or higher efficiency for marketing
spend. In short, happier customers generally result in improved
business and customers who find things they like tend to be happier.

Big data systems provide an excellent platform for building and
deploying a recommendation system, particularly because good rec‐
ommendation requires very large datasets to train a model. You can
build and deploy a simple but very powerful recommender easily by
exploiting search technology running on a data platform. In fact,
such a recommender can be much simpler than you might think.
Let’s take a look at how that works.

The goal of a recommendation engine is to present customers with
opportunities that they might not otherwise find by normal brows‐
ing and searching. This is done by using historical user behavior for
the entire population of users to find patterns that are then cross-
referenced to the recent behavior of a specific user. Recommenda‐
tions can be presented to users explicitly in the form of a list of
recommended items or offers but can also be used more subtly to
make a user’s overall experience more relevant to what they want to
do. As an example, a “What’s New” page could literally just show
new items in reverse chronological order of introduction, or it could
show all items introduced recently ordered by a recommendation
engine. The latter approach tends to engage users more strongly.

There are two major kinds of recommendation systems that are
commonly used in production. One is based on machine learning,
typically using an algorithm called alternating least squares. This sys‐
tem tends to be more complex and deploying the recommendations
requires a specialized recommender engine. The other major kind is
based solely on counting how many times different items co-occur
in users’ activity histories. This result of this co-occurrence analysis
is then inserted into a conventional search engine, often a preexist‐
ing one for deployment of recommendations in production. The
second approach is much simpler than the first and the difference in
performance (if any) is typically not very significant.
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Recommendation systems of this type work by reading large
amounts of historical data and doing a large analysis. This analysis is
typically run as a batch or offline process because it can take tens of
minutes to hours to run. The output of the analysis consists of so-
called recommendation indicators and is transferred to a system
that can match these indicators to recent behavior of a specific user
to make recommendations in real time as soon as new behavior is
observed. You can implement the system that makes these real-time
recommendations using pretty much any conventional search
engine. This implementation choice is very convenient because
search engines are often already being used. Another advantage of
this design for recommendation is that the more computationally
expensive and time-consuming part of the project—building and
training the recommendation model—is done offline, ahead of time,
allowing recommendations to be made for users in real time, online,
as outlined in Figure 5-8.

Figure 5-8. The beauty of this two-part design for a recommendation
engine is that by dividing the computation of recommendations into
two parts, most of the computation can be done offline. That offline
computation prepares information called indicators that a standard
search engine can use to deliver customized recommendations in real
time. The indicators all recommendations for users to be created in real
time.

The offline part of the computation is shown in Figure 5-9. User
behavioral history is analyzed both for co-occurrence of behavior
and for cross-occurrence. In co-occurrence, behaviors are compared
like-to-like. An example might be that if you want to recommend
songs to a listener, you would analyze previous song-listening
behavior. To recommend books for purchase, you would analyze
previous book purchases. With cross-occurrence, in contrast, you
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would analyze past behavior of one type to make recommendations
of a different type. An example would be using past behavior con‐
sisting of reading reviews for a product to recommend purchase of
that item or others. Using multiple cross-occurrences together with
co-occurrence is a valuable way to improve recommender perfor‐
mance.

Figure 5-9. A rough structure for the offline portion of a recommenda‐
tion analysis system. Historical behavior is recorded in user behavior
logs. These logs are examined to generate recommendation indicators
by doing co-occurrence and cross-occurrence analysis. These indicators
are inserted into a search engine together with conventional item
metadata that would normally have been in the search engine.

Note that recent research by Schelter and Celebi is outlining ways
that the offline part of this computation can be done incrementally,
possibly even in strict real time. This would allow a percolation pat‐
tern to be used to update indicators in a recommendation system
within seconds, even as new patterns of behavior emerge or as new
content is introduced.

You can find more information on how recommendation engines
are built in our previous book, Practical Machine Learning: Innova‐
tions in Recommendation (O’Reilly, 2014). That book provides a very
short introduction into how to build a recommendation engine and
describes the theory and basic practice.

Marketing Optimization
The goal of Marketing Optimization is to understand what causes
customers to ultimately buy products across both marketing and
sales cycles. In very few businesses, the marketing that get customers
to engage with a company and the sales process that ensues are rela‐

100 | Chapter 5: Design Patterns



tively simple. An example might be a web-only company that has
only a few online marketing programs. In contrast, many businesses
are at the other extreme and have a large number of marketing con‐
tacts with customers, and the sales process consists of many interac‐
tions, as well. For businesses with anything but the simplest sales
cycles, determining which actions actually help sell things to cus‐
tomers and which things either don’t help or even impede sales is
both difficult and very important. In some cases, a company has
enough products that just deciding which products to talk about at
which times can make a significant difference to the business.

The best practice for this problem is to first establish as complete a
history of interactions with customers as possible. Typically, this
takes the form of some kind of Customer 360 database. The simplest
marketing optimization system and usually the first one imple‐
mented is a recommendation system of some kind. The goal here is
to recognize which customers are likely to be in a position where
offering a particular product to them is likely to result in a sale or
other desired response.

Recommendation systems are very common in online business, but
it is unusual to integrate online and offline experiences as inputs to a
recommender, and it is unusual to drive recommendations uni‐
formly to both online and offline customer interactions.

The next step in complexity beyond an indicator-based recommen‐
dation system is to build per-product sales models. These models
can use behavioral features, including recommendation indicators
and detailed timing of past transactions and marketing efforts, to
attempt to guide the direct sales process by determining which
products have the highest propensity to sell if pitched. These models
are more complex than the models implicit in a normal recommen‐
der, and building them is likely to take a considerable amount of
computation, but for complex sales cycles, the results can be very
significant. The level of effort to build these models, however, is sub‐
stantial and should only be undertaken if the product line and sales
cycle justify the additional complexity. Simpler search engine–based
recommenders are much more appropriate for many companies,
including most business-to-consumer companies, both because the
sales cycle tends to be simpler, but also because spending time on
complex machine learning development is probably worth it only if
there is sufficient leverage to reward the development. Extreme sales
volume is one way to provide this leverage; high per-unit net profit
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is another way. For companies that don’t have these factors, it is
often much more valuable to spend time adding more logging to
user interactions and tuning the user experience to better incorpo‐
rate recommendations from simpler recommendation systems,
instead.

Object Store
The goal of a large Object Store is to store a large number of data
objects that need to be accessed individually, often by name, but that
are not necessarily of interest for wholesale analysis. This has wide
utility in a number of businesses. One common use case is in finan‐
cial companies where all emails, text messages, phone calls, and
even recordings of meetings may be recorded this way and retained
for potential use in proving regulatory compliance. In such a case, it
is important for all of the saved objects to be accessible via standard
file APIs so that standard software for, say, voice-to-text conversion
can be used. Another use case is for media streaming for which a
large number of video or audio files would be stored in different ver‐
sions in different encodings. Typically, there would be a large num‐
ber of thumbnail images or other extracted information associated
with each media item. Commonly, these related files would be
arranged in directories, and it is very useful to have automated ways
to replicate data to other clusters in other data centers and to allow
web servers to read files directly.

In terms of how the objects in an object store are stored, the sim‐
plest possible implementation is to simply store all objects as indi‐
vidual files, one per object, rather than a database. This is
particularly true because large objects, often over a megabyte on
average, are relatively common. Often the underlying purpose for a
large object store is to provide access to media such as videos or
audio recordings; sometimes the objects have to do with messaging
systems or systems data. Typically, the number of objects is in the
tens of millions to tens of billions, and the sizes of the objects
involved range from tens of kilobytes to hundreds of megabytes.
One common requirement is to make objects accessible on the web.
Downtime is typically unacceptable in these systems, and 99.9th per‐
centile response, exclusive of transmission time, must typically be in
the tens of milliseconds.
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Objects in systems like this often come from a very large number of
internet-connected devices. These devices are commonly the pri‐
mary consumer of these objects, but large scans of objects are com‐
mon requirements, as well. For instance, if you are building a video
serving site on a large object store, it will occasionally be necessary
to transcode files into new formats or to extract thumbnail images
or run image classifiers. In media systems, the total number of files
is typically much larger than the number of individual videos being
served because of the requirement to have multiple encoding for‐
mats at multiple bit rates along with additional media assets like
thumbnail images and preview clips. A good rule of thumb is to
expect roughly 100 times more files than you have conceptual
objects such as a video. Decoding audio to text is another common
use.

Traditionally, large object stores have been built on top of special
storage hardware at very high cost, or purpose built using a combi‐
nation of databases (to store object locations) and conventional file
systems at very high cost in operational complexity.

You can use Hadoop systems to create an object store, but they
aren’t very good at it because they cannot store very many objects.
With an HDFS-based system, a completely file-oriented implemen‐
tation will work only at moderate to small scale due to the file count
limit that comes from the basic architecture of HDFS. Depending
on the file size distribution, you might be able to use a combination
of HBase to store smaller files and HDFS to store larger files. Any
HDFS-based solutions will require special software to be written to
translate requests into the HDFS API.

With a MapR-based system, in contrast, you can simply use the sys‐
tem as a very large file system because the very large number of files
and their potentially large size are not a problem for MapR-FS.
Using NFS or a direct POSIX interface to allow direct access by con‐
ventional web services also works well with such a solution. Such
files can also be accessed using the Amazon Web Services’ Simple
Storage Service (Amazon S3) API. Any of these options works as a
stable production system.

Stream of Events as a System of Record
The use of a message streaming system as a log of business events,
and even as the primary system of record, is showing up in more
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and more businesses lately. The basic idea is that as the business
progresses, you keep a history of high-level business events in a
message stream. This approach has the virtue that the stream con‐
tains what amounts to a complete and relatively easily understood
history of the business at all times in the past. This makes it enor‐
mously easier to replay the past, but it may not be obvious how to
implement such a system well. The final result can, however, be
fairly simple, however, and getting a good streaming backbone in
place can really help react to business microcycles better than tradi‐
tional systems.

The motive for doing this was described in Chapter 1 where we
talked about measuring the performance of outgoing emails. In that
example, it was clear that we need to do analyses that are not known
a priori and which require detailed knowledge of events such as
sending and receiving emails. In Chapter 3, we had another example
with fraud control in which we needed to determine what we knew
as of a moment that fraud could still be prevented. Event orientation
was important then because we typically don’t know ahead of time
what patterns of fraud we want to control (the thieves don’t copy us
on the memos when they invent new schemes).

A publicly available example of an event-based system of record is
NASDAQ, which retains all transactions that affect the order book
for equities and can perform a complete replay of these events down
to the exact millisecond. They even allow public access to this event
stream (for a price, of course). Externally, this is advantageous
because it allows regulators, brokers, and traders to see exactly how
trades were executed, but the fact that a precise history of events is
kept has internal benefits, as well. Most notably, the production of a
complete historical log of business events makes it much easier to
validate that internal processes and software perform exactly as
intended. You also can run new versions against historical events to
demonstrate that they also behave exactly as specified.

The precise technology used by NASDAQ is, not surprisingly, not
described publicly, and implementing a fair exchange system that
creates such a log of operations reliably while responding correctly
to all transactions within hard real-time limits is difficult. The fact
remains, however, that if you create a stream of business events, it is
very easy to reuse that stream for all kinds of purposes, and those
purposes can have high value to the business. It is also clear that
having such a log in terms of actual business events rather than in a
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form that exposes the details of how internal systems are actually
implemented has substantial advantages, not least because internal
system details that are well hidden can be changed without external
repercussions.

One of the key aspects of a stream of business events is that you can
reconstruct the state of the business at any point in time. This is
illustrated in Figure 5-10 in which an incoming stream of business
events is used to populate a database, db1, which contains a current
state of the business. A replica of the event stream is used to popu‐
late a second database, db2, which is paused at some past time pre‐
sumably so that the state of the business back then can be
interrogated.

Figure 5-10. You can use business events to populate databases with
current estimates of the business state. Pausing the update of the data‐
base can give snapshots of historical states. Ordinary databases nor‐
mally cannot give you this historical view.

But the capabilities of this approach go further. The two databases
don’t even need to record the same sort of state. One might be sim‐
ply counting transactions; the other might be keeping account bal‐
ances.

Figure 5-11 presents more complete picture of the common design
idiom for such a streaming system of record that could be used for
the email, fraud, or NASDAQ use cases. The idea here is that multi‐
ple critical business systems take a responsibility for writing any
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business events to a stream (labeled “Events” in the figure) before
they are confirmed back to the origin of the event. Moreover, all
such systems undertake to only update any databases local to the
system from the event stream itself. The event stream becomes the
system of record, superior in authority to any of the databases. If
one of the critical systems fails, it is assumed that subsequent user
requests will be re-routed to any surviving systems.

Figure 5-11. Critical subsystems are systems that both use and update
state, emitting business events in the process. Each such system sends
all such events to a business-wide stream of record that can provide a
scalable and inspectable implementation of critical business processes.
You need to consider possible race conditions, but you can avoid this
potential problem with good design.

For many applications, this kind of design is perfectly adequate just
as it stands, say, for handling updates to a user’s profile on some web
service. The reason is simply that updates for a single user occur at
relatively long intervals (typically seconds) and will almost always be
routed to a single critical system. Indeed, the total update rate might
be so slow that only one such system need be active at a time. Even if
some updates were lost due to failure of a communications or a crit‐
ical system while making an update, that would not be the end of the
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world (or the business). Typically, the user would simply repeat the
update after being notified of a timeout.

To handle critical applications that cannot have duplicate transac‐
tions, such as online banking, it is common to add a unique ID to
each transaction that is processed by the system. You should add this
ID as far back in the system as possible, preferably right next to the
origin of the transaction. In the case that everything goes well, the
transaction will be confirmed back to the origin. It is relatively sim‐
ple to design the system so that transactions are confirmed only
when they have succeeded and also been written successfully to the
event stream.

For cases in which communications or a critical system fails before,
during, or after the processing of a transaction, however, the user
might be left in doubt about whether the transaction has succeeded.
In such a case, after communications to any critical system is
restored, the user can be prompted to inspect the recent history of
transactions to verify whether the transaction in question was
applied. Of course, not all business systems can be designed to allow
this user-driven inspection and corrections process, but if it is possi‐
ble, this kind of design can be very robust while still very simple.

It should be noted, however, that if more than one critical system
accepts transactions at a time, there is a potential for self-
contradictory events to be pushed into the events stream. Avoiding
this in the general case can be quite difficult, but in many practical
situations, you can minimize the impact of this risk. For example, if
all events involve just one account, or user profile or package loca‐
tion, you can build a very reliable system this way. In systems for
which extreme availability is important (such as with package loca‐
tions coming from mobile bar code readers), you can build a very
reliable system by making sure that all updates are intrinsically
ordered, possibly by including an accurate time in each event. That
allows events to be buffered at multiple stages, possibly redundantly,
but still allows correct integration of delayed messages and events.
For cases in which events are generated by devices with integrated
GPS receivers, accurate times are easily available which makes this
much easier.

Many businesses also have situations in which orders and stock lev‐
els need to be coordinated. This is commonly used as an example of
a case for which traditional database semantics are required. As a
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practical example, consider a situation with customers who want to
reserve seats at concerts. Suppose you have business constraints
such that you don’t want to allow any customer to have more than
one order pending, nor to buy more than five seats at any one con‐
cert, nor to buy seats at more than four upcoming concerts. You also
don’t want any seat at any concert to be sold to more than one cus‐
tomer. The problem here is that you have two kinds of read-modify-
write operations (one against customers, one against seats) that
seem to require an atomic transaction against two kinds of state, one
for customers and one for seats. Each kind of state would tradition‐
ally be stored in different database tables. Using a database this way
can be a classic scaling bottleneck.

In fact, the real-world business process is anything but atomic
because it involves not just a database, but customers, as well (and
humans don’t support ACID transactions). Customers need to see
available seats before they select them and need to select seats one by
one before they commit to buying them. It takes a bit of time for
them to actually complete the transaction. Abandoned purchases are
also distressingly common, but these must not lock out other buyers
forever. Customarily, the way that this is handled is that customers
have an understanding that once they have selected some seats to
purchase, they have a short period of time in which to buy them,
typically a few minutes. It is also common that there is a rate limiter
so that individual users are not allowed to perform actions faster
than humanly possible. As such, the system can be reduced to
updates to a user’s state (commit to buy) and updates to seat states
(temporarily commit a seat to a user, purchase a seat, release a seat).
We can implement this business process by having one service for
managing user state and another for managing seat state, as shown
in Figure 5-12. Each of these systems follows the pattern previously
shown in Figure 5-11, in which critical systems perform updates
with limited extent and each system sends all business events to a
shared stream.
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Figure 5-12. Cooperating services can create a good user experience
without any multirow atomic updates to both user and seat reserva‐
tions. This allows the user update service and the seat reservation
update service to be sharded by user and seat, respectively, allowing
scalability by limiting the scope of any updates. Sharding this way
without global atomicity gives good scalability with relatively simple
design. The user interface monitors the event stream so that appropri‐
ate updates can be made to user visible state via a mechanism such as
web sockets.

In the process of selling tickets to users, the reservation interface
makes synchronous remote procedure calls (RPCs) to the user
update service or to the seat reservation update service. Both serv‐
ices write the events to the event stream just before returning a
result to the interface. These events would also be used to update the
state inside the service. The states for a user or a seat reservation
evolve, as shown in Figure 5-13. The user interface would signal the
intent to purchase tickets to the user state interface, which would
record the intent internally or deny it if a different purchase session
is in progress.
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Figure 5-13. The user and seat reservation state machines are driven
by synchronous calls from the reservation user interface to the user
and seat reservation services. All call results are sent to the event
stream so that the state can be updated cleanly by any other service.
The asterisk on the ui/start call to the user state indicates that the
request would fail if a conflicting session were already in progress and
hadn’t timed out.

Similar synchronous calls to the seat reservation system would cause
a seat be held or purchased or returned. A seat could only be held by
a user with a valid session and a seat could only be bought if it has a
valid hold that hasn’t timed out. The use of holds in this fashion has
a dual purpose of matching the desired user experience and avoid‐
ing race conditions between users, seats, and the user interface.

Using time-limited reservations in this way is a classic method for
factoring apart the updates to user and seat state and can be applied
in a variety of situations beyond simple seat reservation systems.
The practical effect of factoring transactions apart with reservations
is that we can shard databases on a single entity so that no updates
involve more than a single row. This allows the system to be scaled
in terms of both number of entities (users and seats) and transaction
rate.
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How Fast Is Fast Enough?
Consider how fast your system really might need to be and don’t
overbuild to handle speeds that won’t matter. Modern streaming
and databases are really very fast compared to many real-world
workloads. This means that relatively simple systems can handle
surprisingly high loads. A single partition of a stream on a MapR
system can insert records at a rate of more than 100,000 messages
per second per topic. In contrast, NASDAQ has about 10 million
trades per day. If these trades all occurred in about 20 minutes this
would result in less than a million transactions per second even if
you count all bids, offers, and trades. Partitioning by equity makes
this transaction flow easy to handle. The moral is that simple
streaming designs can have a lot of mileage.

Building a system like this that is reliable in a practical sense often is
fairly different from designing a theoretical system. In a practical
system, there are often practical bounds on how long an event can
be in flight before being considered to have failed or how fast events
for a single entity can happen. These bounds all have to do with real,
measurable time and most theoretical descriptions of database cor‐
rectness specifically disallow any consideration of timing. Using
time effectively in our systems, however, can give us substantial
practical advantages in terms of simplicity and scalability without
compromising real-world correctness.

Deduplication of events can make similar use of such timing bounds
to limit how many pending events to keep in a deduplication buffer.
It should be kept in mind that the goal in a production system is to
drive the probability of system failure below an acceptable limit.
This typically means that the system is neither designed purely for
maximum availability nor absolute consistency; rather, the system is
designed to trade-off the consequences of different kinds of failure
to find a business-optimal, user-friendly middle ground.

Table Transformation and Percolation
In some cases, it can be impractical to change a working system so
that it uses a streaming system of record. In these situations, it can
still be very useful to use a related pattern that uses a stream to
directly track changes to the content of a table even though the code
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making those updates remains unchanged. Another situation in
which this is useful is when a table is already being used by a service,
but we want to allow access to some version of that table without
accidentally messing up the original or imposing any load on the
original table. A third situation is when we want to be able to restore
any version of a database from any time or replay the evolution of
the database from past times. Figure 5-14 shows the basic idea.

Figure 5-14. With changed data streaming, changes made to a master
table are put into a stream (labeled Changes here). You can use this
change stream to create snapshots of the table with each snapshot copy
corresponding to an offset in the change stream. Clones of the master
table can also be created via a transformation. You can even imple‐
ment these clones by using completely different technology than the
master table, but they can still be initialized using snapshots from the
snapshot service.

In this pattern, one table is considered the master copy of the data.
Changes to this table are inserted into a stream using whatever CDC
system is available for the master table. These changes are best
stored in a stream so that you can back up and replay them at any
time. The first consumer in the figure of these changes is a so-called
snapshot service. The point of the snapshot service is to make and
save copies of the master table at different points in time. Each of
these snapshots includes the stream offset of the last change in the
snapshot. This allows you to quickly construct a current copy of the
database by copying the snapshot and replaying all changes starting
from the offset specified in the snapshot table. This initialization is
illustrated in Figure 5-14 with a dashed line.
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One of the key advantages of this pattern is not so much to make
identical copies of the table; rather, it’s to create functional clones of
the master table that include transformed or selected values from
the master or are stored using a different technology than the mas‐
ter table. For instance, the clone might include only a few columns
from the master. Alternatively, the clone might be stored in a very
fast technology that is not robust to failures. Such a failure would
not be a huge problem because you could easily reconstitute the in-
memory form of the table from snapshots. Another option would be
to have the clone be heavily indexed to support, say, full-text search.

This kind of design is not as useful as keeping business-level events
in a stream. The reason is that table updates tend to be on much
lower level of abstraction and, as such, harder to interpret in the
context of the business. In many cases, a single business event can
cause multiple table updates and the updates for different business
events may be intertwined. As such, it is relatively easy to translate
from business events to table updates, but it is often quite difficult to
reverse the process. On the other hand, the table cloning pattern is
architecturally much less invasive, and thus easier to get imple‐
mented. Cloning is particularly handy when you have lots of con‐
sumers who cannot handle the full detail in the master table and
only want an extract containing some rows or some columns or who
want a fast materialized aggregate value. In Figure 5-14, for example,
Clone 1 and Clone 2 need not have the same data at all.

The idea of selective or transformed clones of a table is particularly
useful when you have a very detailed customer 360 system. In such
systems the customer tables with all previous transactions are too
large and detailed for most internal consumers. To simplify using
such a system it can help to provide drastically simplified clones that
are automatically kept synchronized with the master table.

It is also possible to adapt the table cloning pattern to implement so-
called percolation computations. The basic idea is that the data
inserted into the master table is only skeletal in nature. Each time
such a skeleton is inserted, however, a consumer of the change
stream elaborates the skeleton data and inserts additional informa‐
tion into the original entry, as illustrated in Figure 5-15.

Table Transformation and Percolation | 113



Figure 5-15. With percolation, a change capture stream is used not for
replication, but to trigger further changes in a table. This allows the
data source to insert (or change) only the barest minimum of data in
the master table. Subsequent enrichment or aggregation can be done
by the percolator.

Percolation can be very handy when you have a system that inserts
data into a table, but you don’t want to have that system spend the
time to compute the fully elaborated form of that data. With perco‐
lation, the basic data source can be kept very simple, and all the
work of elaborating the data beyond the original form can be
deferred out of the critical path. Percolation can also become a dan‐
gerous data pattern if the changes are not idempotent or if the per‐
colated changes cause more percolation. If you find yourself
building elaborate patterns of percolation, you probably will be hap‐
pier with streaming system of record pattern.
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CHAPTER 6

Tips and Tricks

So, what does it take to put artificial intelligence (AI), machine
learning, or large-scale analytics into production? In part, it depends
on decisions you make as you design and implement your work‐
flows and how you set up your cluster(s) to begin with. The technol‐
ogies available for building these systems are powerful and have
huge potential, but we are still discovering ways that we can use
them. Whether you are experienced or a newcomer to these tech‐
nologies, there are key decisions and strategies that can help ensure
your success. This chapter offers suggestions that can help you make
choices about how to proceed.

The following list is not a comprehensive “how-to” guide, nor is it
detailed documentation about large-scale analytical tools. Instead,
it’s an eclectic mix. We provide technical and strategic tips—some
major and some relatively minor or specialized—that are based on
what has helped other users we have known to succeed. Some of
these tips will be helpful before you begin, whereas others are
intended for more seasoned users, to guide choices as you work in
development and production settings.

Tip #1: Pick One Thing to Do First
If you work with large volumes of data and need scalability and flex‐
ibility, you can use machine learning and advanced analytics in a
wide variety of ways to reduce costs, increase revenues, advance
your research, and keep you competitive. But adopting these tech‐
nologies is a big change from conventional computing, and if you
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want to be successful quickly, it helps to focus initially on one spe‐
cific use for this new technology.

Don’t expect to know at the start all the different ways that you
might eventually want to use machine learning or advanced analyt‐
ics. Instead, examine your needs (immediate or long-term goals),
pick one need that offers a near-term advantage, and begin planning
your initial project. As your team becomes familiar with what is fea‐
sible and with the ecosystem tools required for your specific goal,
you’ll be well positioned to try other things as you see new ways in
which advanced analytical systems may be useful to you.

There’s no single starting point that’s best for everyone. In Chap‐
ter 5, we describe some common design patterns for machine learn‐
ing and advanced analytics. Many of those would make reasonable
first projects. As you consider where to begin, whether it comes
from our list or not, make sure that there is a good match between
what you need done and what such a system does well. For your first
project, don’t think about picking the right tool for the job; be a bit
opportunistic and pick the right job for the tool.

By focusing on one specific goal to start with, the learning curve that
you face can be a little less steep. For example, for your first project,
you might want to pick one with a fairly short development horizon.
You can more quickly see whether your planning is correct, deter‐
mine if your architectural flow is effective, and begin to gain famili‐
arity with what you can actually achieve. This approach can also get
you up and running quickly and let you develop the expertise
needed to handle the later, larger, and likely more critical projects.

Many if not most of the successful and large-scale data systems
today started with a single highly focused project. That first project
led in a natural way to the next project and the next one after that.
There is a lot of truth in the idea that big data didn’t cause these sys‐
tems to be built, but that instead, building them created big data. As
soon as there is a cluster available, you begin to see the possibilities
of working with much larger (and new) datasets. As soon as you can
build and deploy machine learning models, you begin to see places
to use such models everywhere. It is amazing to find out how many
people had analytical projects in their hip pocket and how much
value can be gained from bringing them to life.
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Tip #2: Shift Your Thinking
Think in a different way so that you change the way that you design
systems. This idea of changing how you think may be one of the
most important bits of advice we can offer to someone moving from
a traditional computing environment. This mental transition may
sound trivial, but it actually matters a lot if you are to take full
advantage of the potential that advanced analytical systems and
machine learning offer. Here’s why.

The methods and patterns that work best for large-scale computing
are very different from the methods and patterns that work in more
traditional environments, especially those that involve relational
databases and data warehouses. A significant shift in thinking is
required for the operations, analytics, and applications development
teams. This change is what will let you build systems that make good
use of what new data technologies do. It is undeniably very hard to
change the assumptions that are deeply ingrained by years of experi‐
ence working with traditional systems. The flexibility and capabili‐
ties of these new systems are a great advantage, but to be fully
realized, you must pair them with your own willingness to think in
new ways.

The following subsections look at some specific examples of how to
do this.

Learn to Delay Decisions
This advice likely feels counterintuitive. We’re not advocating pro‐
crastination in general—we don’t want to encourage bad habits—
but it is important to shift your thinking away from the standard
idea that you need to completely design and structure how you will
format, transform, and analyze data from the start, before you
ingest, store, or analyze any of it.

This change in thinking is particularly hard to do if you’re used to
using relational databases, where the application life cycle of plan‐
ning, specifying, designing, and implementing can be fairly impor‐
tant and strict. In traditional systems, just how you prepare data—
that is, do Extract, Transform, and Load (ETL)—is critically impor‐
tant; you need to choose well before you load, because changing
your mind late in the process with a traditional system can be disas‐
trous. This means that with traditional systems such as relational
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databases, your early decisions really need to be fully and carefully
thought through and locked down.

With modern tools that support more flexible data models, you
don’t need to be locked into your first decisions. It’s not only unnec‐
essary to narrow your options too much from the start, it’s also not
advised. To do so limits too greatly the valuable insights you can
unlock through various means of data exploration.

It’s not that you should store data without any regard at all for how
you plan to use it. Instead, the new idea here is that the massively
lower cost of large-scale data storage and the ability to use a wider
variety of data formats means that you can load and use data in rela‐
tively raw form, including unstructured or semistructured formats.
This is useful because it leaves you open to use it for a known
project but also to decide later how else you may want to use the
same data. This flexibility is particularly useful because you can use
the data for a variety of different projects, some of which you’ve not
yet conceived at the time of data ingestion. The big news is that
you’re not stuck with your first decisions.

Save More Data
If you come from a traditional data storage background, you’re
probably used to automatically thinking in terms of extracting,
transforming, summarizing, and then discarding the raw data. Even
where you run analytics on all incoming data for a particular
project, you likely do not save more than a few weeks or months of
data because the costs of doing so would quickly become prohibi‐
tive.

With modern systems, that changes dramatically. You can benefit by
saving much longer time spans of your data because data storage can
be orders of magnitude less expensive than before. These longer his‐
tories can prove valuable to give you a finer-grained view of opera‐
tions or for retrospective studies such as forensics. Predictive
analytics on larger data samples tends to give you a more accurate
result. You don’t always know what will be of importance in data at
the time it is ingested, and the insights that you can gain from a later
perspective will not be possible if the pertinent data has already been
discarded.

“Save more data” means saving data for longer time spans, from
larger-scale systems, and also from new data sources. Saving data
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from more sources also opens the way to data exploration—experi‐
mental analysis of data alongside your mainstream needs that may
unlock surprising new insights. This data exploration is also a rea‐
son for delaying decisions about how to process or downsample data
when it is first collected.

Saving data longer can even simplify the basic architecture of system
components such as message-queuing systems. Traditional queuing
systems worry about deleting messages as soon as the last consumer
has acknowledged receipt, but new systems keep messages for a
much longer time period and expire them based on size or age. If
messages that should be processed in seconds will actually persist
for a week, most of the need for fancy acknowledgement mecha‐
nisms vanishes. It also becomes easier to replay data. Your architec‐
ture may have similar assumptions and similar opportunities.

Rethink How Your Deployment Systems Work
Particularly when you have container-based deployments combined
with streaming architecture, you can often have much more flexible
deployment systems. A particular point of interest is the ability to
deploy more than one version of a model at a time for comparison
purposes and to facilitate very simple model roll forward and roll
back. If you don’t have a system capable of doing this, you might
want to consider making that change.

Tip #3: Start Conservatively but Plan to
Expand
A good guideline for your initial purchase of a cluster is to start con‐
servatively and expand at a later date. Don’t try to commit to finaliz‐
ing your cluster size from the start; you’ll know more six months
down the line about how you want to use your system and therefore
how large a cluster makes sense than you will at first. If you are
using a good data platform, this should be fairly easy and not overly
disruptive, even if you expand by very large factors. Some rough
planning can be helpful to budget the overall costs of seeing your big
data project through to production, but you can make these esti‐
mates much better after a bit of experience.

That said, make sure to provide yourself with a reasonably sized
cluster for your initial development projects. You need to have suffi‐
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cient computing power and storage capacity to make your first
project a success, so give it adequate resources. Remember also that
extra uses for your cluster will pop out of the woodwork almost as
soon you get it running. When ideas for new uses arise, be sure to
consider whether your initial cluster can handle them or whether it’s
time to expand. Capacity planning is a key to success.

A common initial cluster configuration as of the writing of this book
is 10 to 30 machines, each with 12 to 24 disks and 128 to 256 GB of
RAM. It is not uncommon to consider NVMe-based flash storage,
especially for clusters doing machine learning. If you need to slim
this down initially, go for fewer nodes with good specifications
rather than having more nodes that give very poor performance. If
you can, go for at least multiple 10 Gb/s network ports, but consider
faster networking if you are using flash storage. It is also becoming
more and more common to include one or more nodes equipped
with Graphics Processing Units (GPUs) for machine learning. It isn’t
unusual to have a relatively heterogeneous cluster with some GPU
+flash machines for compute-intensive jobs combined with
machines with large amounts of spinning drives for cold storage.
Just remember, you can always add more hardware at any time.

Tip #4 Dealing with Data in Production
We mentioned in Chapter 1 that the view of being in production
should extend to data, and that you need to treat data to as a pro‐
duction asset much earlier than you have to treat code that way. This
is particularly true because your current (supposedly nonproduc‐
tion) data may later be incorporated retrospectively by some future
project which effectively makes your current data a production
asset. That can even happen without you even realizing it. So how
can you prevent unwitting dependencies on unreliable data? How
do you deal with that possibility for current and future (as yet
unknown) projects?

There are no hard-and-fast answers to this problem; it’s actually
quite hard. But you can do some things to avoid getting too far off
the path.

One of the first things that you can do is to make sure that you dis‐
tinguish between data that is “production” from data that is “prepro‐
duction.” Then, only allow production processes to depend on
production data and allow production data to be written only by
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production services. Nonproduction should not have permission to
write to any “production” grade data, although it might be allowed
to read from that data. To make this easier, it helps to have a data
platform that allows administrative control over permissions for
entire categories of data. The idea here is that once data has been
tainted by being the product of a nonproduction process, it cannot
be restored to production grace. This provides the social pressure
necessary to make sure that production data is only ever produced
by production code, which has sufficient controls to allow the data
to be re-created later if a problem is found.

It won’t always be possible to maintain this level of production qual‐
ity purity, but having a permission scheme in place will force an
organizational alert when production processes try to depend on
preproduction data. That will give you a chance to examine that data
and bring the processes that produce that data under necessary con‐
trol to get stability.

Machine learning is a bit of an exception. The problem is that train‐
ing data for a model is often not produced by a fully repeatable pro‐
cess and thus isn’t production grade. The next best bet is to freeze
and preserve the training data itself as it was during training for all
production models. This is in addition to version controlling the
model building process itself.

Unfortunately, it is more and more common that the training data
for a model is more than 1 GB in size or larger. Training sets in the
terabyte range and above are becoming more and more common.
Version control systems already have problems with objects as large
as 100 MB, so conventional version control is not plausible for train‐
ing data. Data platform snapshots, however, should not be a prob‐
lem even for petabyte-scale objects. Engineering provenance over
models can thus be established by version controlling the code and
snapshotting the data.

Tip #5: Monitor for Changes in the World and
Your Data
The world changes, and your data will, too. Advanced analytics and
machine learning systems almost never deal with an entirely closed
and controlled world. Instead, when you deploy such a system there
is almost always something that is outside your control. This is par‐
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ticularly true of large-scale systems, systems that are in long-term
production, systems that get information from the internet, and sys‐
tems that have adversaries such as fraudsters. The data you see in
your system is very unlikely to be static. It will likely change due to
updated formats, new data, loss of data sources, or enemy (or com‐
petitor or fraudster) actions.

Recognizing that this is inevitable, it is important that you be pre‐
pared and that you watch for what comes your way. There are many
techniques to look for shifts of this sort, but here are two particular
techniques that are relatively easy but still provide substantial value.
The first method is to look at the shape of your incoming data. You
can do this by clustering your input data to find patterns of highly
related input features. Later, for each new data point, you find which
cluster the new data point is closest to and how far it is from the
center of that cluster. This method reduces multidimensional input
data into a one-dimensional signal and reduces the problem of
monitoring your input data to that of monitoring one-dimensional
signals (the distances) and arrival times (when points are added to
each cluster). You also can use more advanced kinds of autoencod‐
ers, but the key is reducing complex input into a (mathematically)
simpler discrepancy score for monitoring. You can find more infor‐
mation about monitoring for change this way in our book Practical
Machine Learning: A New Look at Anomaly Detection (O’Reilly,
2014).

A second technique involves looking at the distribution of scores
that come out of your machine learning models. Because these mod‐
els learn regularities in your input data, the score distributions are
important indicators of what is happening in general in your data
and changes in those distributions can be important leading indica‐
tors of changes that might cause problems for your system. You can
learn more about monitoring machine learning models in our book
Machine Learning Logistics: Model Management in the Real World
(O’Reilly, 2017).

Tip #6: Be Realistic About Hardware and
Network Quality
AI, machine learning, and advanced analytics offer huge potential
cost savings as well as top-line opportunities, especially as you scale
up. But it isn’t magic. If you set a bad foundation, these systems can‐
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not make up for inadequate hardware and setup. If you try to run on
a couple of poor-quality machines with a few disks and shaky net‐
work connections, you won’t see very impressive results.

Be honest with yourself about the quality of your hardware and your
network connections. Do you have sufficient disk space? Enough
disk bandwidth? Do you have a reasonable balance of cores to disk
to network bandwidth? Do you have a reasonable balance of CPU
and disk capacity for the scale of data storage and analysis you plan
to do? And, perhaps most important of all, how good are your net‐
work connections?

A smoothly running cluster will put serious pressure on the disks
and network—it’s supposed to do so. Make sure each machine can
communicate with every other machine at the full bandwidth for
your network. Get good-quality switches and be certain that the sys‐
tem is connected properly.

To do this, plan time to test your hardware and network before you
install anything, even if you think your systems are working fine.
This helps avoid problems and makes it easier to isolate the source
of problems if they do arise. If you do not take these preparatory
steps and a problem occurs, you won’t know whether it is hardware
or a software issue that’s at fault. Lots of people waste lots of time on
this. Trying to build a high-performance cluster with misconfigured
network, disk controllers, or memory is so common that we require
a hardware audit before installing clusters.

The good news is that we have some pointers to good resources for
how to test machines for performance. For more details, see the
Appendix at the end of this book.

Tip #7: Explore New Data Formats
Decisions to use new data formats, such as semi-structured or
unstructured data, have resulted in some of the most successful
advanced data projects that we have seen.These formats may be
unfamiliar to you if you’ve worked mainly with traditional data‐
bases, but they can provide substantial benefits by allowing you to
“future-proof ” your data. Some useful new formats such as Parquet
or well-known workhorses like JSON allow nested data with very
flexible structure. Parquet is a binary data form that allows efficient
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columnar access, and JSON allows the convenience of a human
readable form of data, as displayed in Example 6-1.

Example 6-1. Nested data showing a VIN number expanded to show
all of the information it contains in more readable form

{
   "VIN":"3FAFW33407M000098",
   "manufacturer":"Ford",
   "model": {
     "base": "Ford F-Series, F-350",
     "options": ["Crew Cab", "4WD", "Dual Rear Wheels"]
   },
   "engine":{
     "class": "V6,Essex",
     "displacement": "3.8 L",
     "misc": ["EFI","Gasoline","190hp"]
   },
   "year":2007
}

Nested data formats such as JSON (shown in Example 6-1) are very
expressive and help future-proof your applications by making data
format migration safer and easier. Social media sources and web-
oriented APIs such as Twitter streams often use JSON for just this
reason.

Nested data provides you with some interesting new options. Think
of this analogy: Nested data is like a book. A book is a single thing,
but it contains subsets of content at different levels, such as chapters,
figure legends, and individual sentences. Nested data can be treated
as a unit, but the data at each internal layer can also be used in detail
if desired.

Nested data formats such as JSON or Parquet combine flexibility
with performance. A key benefit of this flexibility is future-proofing
your applications. Old applications will silently ignore new data
fields, and new applications can still read old data. Combined with a
little bit of discipline, these methods lead to very flexible and robust
interfaces. This style of data structure migration was pioneered by
Google and has proved very successful in a wide range of compa‐
nies.

Besides future-proofing, nested data formats let you encapsulate
structures. Just as with programming languages, encapsulation
allows data to be more understandable and allows you to hide irrele‐
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vant details in your code. As an example, if you copy the engine data
in the VIN structure in Example 6-1, you can be confident that even
if the details contained in an engine data structure change, your
copy will still work precisely because the details aren’t mentioned.

These new formats seem very strange at first if you come from a
relational data background, but they quickly become second nature
if you give them a try. One of your challenges for success is to
encourage your teams to begin to consider unstructured and semi-
structured data among their options. From a business perspective,
access to semi-structured, unstructured, and nested data formats
gives you a chance to reap the benefits of analyzing social data, of
combining insights from diverse sources, and reducing development
time through more efficient workflows for many projects.

Tip #8: Read Our Other Books (Really!)
We’ve written several short books published by O’Reilly Media that
provide pointers to handy ways to build Hadoop applications for
practical machine learning, such as how to do more effective anom‐
aly detection (Practical Machine Learning: A New Look at Anomaly
Detection), how to build a simple but very powerful recommenda‐
tion engine (Practical Machine Learning: Innovations in Recommen‐
dation), how to build high-performance streaming systems
(Streaming Architecture: New Designs Using Apache Kafka and MapR
Streams), and how to manage the logistics involved in the deploy‐
ment of machine learning systems (Machine Learning Logistics:
Model Management in the Real World). Each of these short books
takes on a single use case and elaborates on the most important
aspects of that use case in an approachable way. In our current book,
we are doing the opposite, treating many use cases at a considerably
lower level of detail. Both high- and low-detail approaches are use‐
ful.

So, check those other books out; you may find lots of good tips that
fit your project.
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Appendix

Additional Resources
These resources will help you to build production artificial intelli‐
gence and analytics systems:

• “Big News for Big Data in Kubernetes.” Video of talk by Ted
Dunning at Berlin Buzzwords, 12 June, 2018; http://bit.ly/
2LWAsEF

• “What Matters for Data-Intensive Applications in Production.”
Video of talk by Ellen Friedman at Frankfurt Convergence June
2018; https://youtu.be/Cr39GFNMFm8

• “How to Manage a DataOps Team.” Article by Ellen Friedman
in RTInsights, June 2018; http://bit.ly/2vHhlDK

• “Getting Started with MapR Streams.” Blog by Tugdual Grall;
http://bit.ly/2OLLVVw

• Cluster validation scripts http://bit.ly/2KCBznw

Selected O’Reilly Publications by Ted Dunning
and Ellen Friedman

• Machine Learning Logistics: Model Management in the Real
World (September 2017)

• Data Where You Want It: Geo-Distribution of Big Data and Ana‐
lytics (March 2017)
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• Streaming Architecture: New Designs Using Apache Kafka and
MapR Streams (March 2016)

• Sharing Big Data Safely: Managing Data Security (September
2015)

• Real-World Hadoop (January 2015)
• Time Series Databases: New Ways to Store and Access Data

(October 2014)
• Practical Machine Learning: A New Look at Anomaly Detection

(June 2014)
• Practical Machine Learning: Innovations in Recommendation

(January 2014)

O’Reilly Publication by Ellen Friedman and
Kostas Tzoumas

• Introduction to Apache Flink: Stream Processing for Real Time
and Beyond (September 2016)
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